首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   1篇
  国内免费   3篇
化学   43篇
力学   3篇
数学   4篇
物理学   3篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   5篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2014年   2篇
  2013年   1篇
  2012年   6篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
Horse radish peroxidase (HRP) has been electrochemically entrapped into perchlorate (ClO) doped polyaniline (PANI) film deposited onto indium‐tin‐oxide (ITO) coated glass plate. This HRP‐PANI‐ClO/ITO bioelectrode characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), UV‐Visible spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques has been utilized for estimation of hydrogen peroxide (H2O2). This H2O2 sensor exhibits response time of 5 s, linearity from 3 to 136 mM, sensitivity as 0.5638 µA mM?1 cm?2 with linear regression of 0.985. The value of the Michaelis–Menten constant (Km) has been obtained as 1.984 mM. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
2.
We introduce a new and efficient numerical method for multicriterion optimal control and single criterion optimal control under integral constraints. The approach is based on extending the state space to include information on a "budget" remaining to satisfy each constraint; the augmented Hamilton-Jacobi-Bellman PDE is then solved numerically. The efficiency of our approach hinges on the causality in that PDE, i.e., the monotonicity of characteristic curves in one of the newly added dimensions. A semi-Lagrangian "marching" method is used to approximate the discontinuous viscosity solution efficiently. We compare this to a recently introduced "weighted sum" based algorithm for the same problem [25]. We illustrate our method using examples from flight path planning and robotic navigation in the presence of friendly and adversarial observers.  相似文献   
3.
The 2D network having porphyrin like internal core are well established in literature due to their remarkable molecular tunability, photophysical and optoelectronics properties. Therefore, in the quest to attain the high performance nonlinear optical (NLO) response we have designed single Benzo-bisimidazole (BIZ) unit which has porphyrin like motif and expanded it strategically in such a way that it forms cage and further it convert into 2D nanosheet. Density functional theory (DFT), sum-over-state models and time dependent-DFT (TD-DFT) simulation were performed for geometric and electronic properties calculation. Expanding the BIZ plays a pivotal role in enhancement of the first static hyperpolarizability (βtot) from 205.65 to 13754.59 au. Further, alkali metals substitution leads to gigantic enhancement of βtot value from 2200.17 to 636673.60 au which is enormously higher than that of recently reported porphyrin derivative (47950 au). Calculated results revealed that the gap between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) become narrow down from 6.28 eV ( 1 ) to 1.70 eV ( 6 ). It is to note that the designed molecules exhibit red shift of absorption. Further, density of states (DOS), and transition density matrix (TDM) analysis have also performed to explore the charge transfer and structure property relationship.  相似文献   
4.
Dinuclear gold(I)-N-heterocyclic carbene complexes were developed for the hydrohydrazidation of terminal alkynes. The gold(I)-N-heterocyclic carbene complexes 2a-2b were synthesized in good yields from silver complexes synthesized in situ, which in turn were obtained from the corresponding imidazolium salts with Ag2O in dichloromethane as a solvent. The new air-stable gold(I)-NHC complexes, 2a - 2b, were characterized using NMR spectroscopy, elemental analysis, infrared, and mass spectroscopy studies. The gold(I) complex 2a was characterized using X-ray crystallography. Bis-N-heterocyclic carbene–based gold(I) complexes 2a - 2b exhibited excellent catalytic activities for hydrohydrazidation of terminal alkynes yielding acylhydrazone derivatives. The working catalytic system can be used in gram-scale synthesis. In addition, the catalytic reaction mechanism of the hydrohydrazidation of terminal alkynes by gold(I)-NHC complex was studied in detail using density functional theory.  相似文献   
5.
Reported here is the synthesis and self-assembly characterization of [n.n]paracyclophanes ( [n.n]pCps , n=2, 3) equipped with anilide hydrogen bonding units. These molecules differ from previous self-assembling [n.n]paracyclophanes ( [n.n]pCps ) in the connectivity of their amide hydrogen bonding units (C-centered/carboxamide vs. N-centered/anilide). This subtle change results in a ≈30-fold increase in the elongation constant for the [2.2]pCp -4,7,12,15-tetraanilide ( [2.2]pCpNTA ) compared to previously reported [2.2]pCp -4,7,12,15-tetracarboxamide ( [2.2]pCpTA ), and a ≈300-fold increase in the elongation constant for the [3.3]pCp -5,8,14,17-tetraanilide ( [3.3]pCpNTA ) compared to previously reported [3.3]pCp -5,8,14,17-tetracarboxamide ( [3.3]pCpTA ). The [n.n]pCpNTA monomers also represent the reversal of a previously reported trend in solution-phase assembly strength when comparing [2.2]pCpTA and [3.3]pCpTA monomers. The origins of the assembly differences are geometric changes in the association between [n.n]pCpNTA monomers—revealed by computations and X-ray crystallography—resulting in a more favorable slipped stacking of the intermolecular π-surfaces ( [n.n]pCpNTA vs. [n.n]pCpTA ), and a more complementary H-bonding geometry ( [3.3]pCpNTA vs. [2.2]pCpNTA ).  相似文献   
6.
The rabbit immunoglobulin antibodies (IgGs) have been immobilized onto nanobiocomposite film of chitosan (CH)–iron oxide (Fe3O4) nanoparticles prepared onto indium–tin oxide (ITO) electrode for detection of ochratoxin-A (OTA). Excellent film forming ability and availability of –NH2 group in CH and affinity of surface charged Fe3O4 nanoparticles for oxygen support the immobilization of IgGs. Differential pulse voltammettry (DPV) studies indicate that Fe3O4 nanoparticles provide increased electroactive surface area for loading of IgGs and improved electron transport between IgGs and electrode. IgGs/CH–Fe3O4 nanobiocomposite/ITO immunoelectrode exhibits improved characteristics such as low detection limit (0.5 ng dL−1), fast response time (18 s) and high sensitivity (36 μA/ng dL−1 cm−2) with respect to IgGs/CH/ITO immunoelectrode.  相似文献   
7.
Zinc oxide nanoparticles (NanoZnO) uniformly dispersed in chitosan (CHIT) have been used to fabricate a hybrid nanocomposite film onto indium-tin-oxide (ITO) glass plate. Cholesterol oxidase (ChOx) has been immobilized onto this NanoZnO-CHIT composite film using physiosorption technique. Both NanoZnO-CHIT/ITO electrode and ChOx/NanoZnO-CHIT/ITO bioelectrode have been characterized using Fourier transform-infrared (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) techniques, respectively. The ChOx/NanoZnO-CHIT/ITO bioelectrode exhibits linearity from 5 to 300 mg dl−1 of cholesterol with detection limit as 5 mg dl−1, sensitivity as 1.41 × 10−4 A mg dl−1 and the value of Michaelis-Menten constant (Km) as 8.63 mg dl−1. This cholesterol biosensor can be used to estimate cholesterol in serum samples.  相似文献   
8.
The current research work illustrates an economical and rapid approach towards the biogenic synthesis of silver nanoparticles using aqueous Punica granatum leaves extract (PGL-AgNPs). The optimization of major parameters involved in the biosynthesis process was done using Box-Behnken Design (BBD). The effects of different independent variables (parameters), namely concentration of AgNO3, temperature and ratio of extract to AgNO3, on response viz. particle size and polydispersity index were analyzed. As a result of experiment designing, 17 reactions were generated, which were further validated experimentally. The statistical and mathematical approaches were employed on these reactions in order to interpret the relationship between the factors and responses. The biosynthesized nanoparticles were initially characterized by UV-vis spectrophotometry followed by physicochemical analysis for determination of particle size, polydispersity index and zeta potential via dynamic light scattering (DLS), SEM and EDX studies. Moreover, the determination of the functional group present in the leaves extract and PGL-AgNPs was done by FTIR. Antibacterial and antibiofilm efficacies of PGL-AgNPs against Gram-positive and Gram-negative bacteria were further determined. The physicochemical studies suggested that PGL-AgNPs were round in shape and of ~37.5 nm in size with uniform distribution. Our studies suggested that PGL-AgNPs exhibit potent antibacterial and antibiofilm properties.  相似文献   
9.
This work reports the first synthesis of MAPbBr3 perovskite nanocrystals (PNCs) using amino acids as the ligand with excellent optical properties. A variety of amino acids are used to optimize the luminescence properties. A mechanochemical approach has taken lead over conventional colloidal chemistry during synthesis. All morphological and optical studies are performed to characterize the synthesized perovskite nanoparticles. Later, stability studies are investigated through thermogravimetric analysis, temperature‐dependent photoluminescence, time‐dependent X‐ray diffraction, as well as X‐ray photoelectron spectroscopy. In an application, interestingly, these perovskites show high luminescence upon scratching on flexible conducting plates and on plain paper surface. These results suggest that the amino acid–ligated perovskite nanocrystals can be potential materials for optoelectronic application including light‐emitting diodes and imaging.  相似文献   
10.
A deoxyribonucleic acid (DNA) biosensor has been fabricated via immobilization of 17 base terminal single stranded DNA (ssDNA) identified from the 16s rRNA coding region of Escherichia coli onto sol–gel derived nanostructured zirconium oxide (NanoZrO2) film. An oligonucleotide probe with a terminal 5′-phosphate group has been attached to the surface of the electrode via affinity of NanoZrO2 for phosphate. The results of hybridization studies carried out with the complementary, non-complementary and genomic DNA reveal that ssDNA/NanoZrO2/ITO bioelectrode has a high selectivity and sensitivity towards hybridization detection with limits of 10?6–106 pM of complementary DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号