首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   5篇
物理学   1篇
  2021年   2篇
  2015年   1篇
  2010年   1篇
  2008年   1篇
  1975年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
In several literature reports biuret and its sulfur analogs are reported to exist in their diketo form with general formula H2N? CX? NH? CY? NH2 (X = O, Y = O, biuret; X = Y = S, dithiobiuret; and X = O, Y = S, thiobiuret). On the other hand, recently reported results on the electronic structure of biguanide analogs (X = Y = NH)demonstrated that a form equivalent to diketo is not the preferred structure. Thus, a systematic ab initio study on the tautomeric preferences of biuret and its sulfur analogs (dithiobiuret and thiobiuret) has been carried out. The results indicate that an interplay of conjugative stabilization and intramolecular hydrogen bonding to play a role in tautomeric preferences. Energy and geometric parameters, natural bond orbital analyses have been employed to understand the chemistry of the title compounds. The results indicate that unlike biguanides, these compounds prefer diketo forms containing hydrogen on the bridging nitrogen (N4) and in a trans‐arrangement (1a–4a). However, tautomerization of these keto forms to the corresponding enol isomers was also found to be highly probable. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   
3.
4.
Up to a recent time, Inelastic Electron Tunneling has been observed when exciting vibrational modes of ions. In this paper, we report the excitation of transition in rare earth oxides involving the motion of electrons. This confirms the generality of this new spectroscopy. The theoretical explanation of the size of the experimental effects needs improved calculations of tunneling electron-atom collisions, but we can conclude that the study of systems with low lying (<1 eV), optically allowed, electronic transitions, if possible, should lead to very strong effects on the tunnel characteristics.  相似文献   
5.
Using small-scale batch tests, various researchers investigated the adsorptive removal of fluoride using low-cost clay minerals, such as Bentonite. In this study, Column adsorption studies were used to investigate the removal of fluoride from aqueous solution using acid-treated Bentonite (ATB). The effects of initial fluoride concentration, flow rates, and bed depth on fluoride removal efficiency (R) and adsorption capability (qe) in continuous settings were investigated, and the optimal operating condition was determined using central composite design (CCD). The model’s suitability was determined by examining the relationship between experimental and expected response values. The analysis of variance was used to determine the importance of independent variables and their interactions. The optimal values were determined as the initial concentration of 5.51 mg/L, volumetric flow rate of 17.2 mL/min and adsorbent packed-bed depth of 8.88 cm, with % removal of 100, adsorptive capacity of 2.46 mg/g and desirability of 1.0. This output reveals that an acid activation of Bentonite has made the adsorbent successful for field application.  相似文献   
6.
Electronic structure analysis of guanylthiourea (GTU) and its isomers has been carried out using quantum chemical methods. Two major tautomeric classes (thione and thiol) have been identified on the potential energy (PE) surface. In both the cases conjugation of pi‐electrons and intramolecular H‐bonds have been found to play a stabilizing role. Various isomers of GTU on its PE surface have been analyzed in two different groups (thione and thiol). The interconversion from the most stable thione conformer ( GTU‐1 ) to the most stable thiol conformer ( GTU‐t1 ) was found to take place via bimolecular process which involves protonation at sulfur atom of GTU‐1 followed by subsequent C? N bond rotation and deprotonation. The detailed analysis of the protonation has been carried out in gas phase and aqueous phase (using CPMC model). Sulfur atom (S1) was found to be the preferred protonation site (over N4) in GTU‐1 in gas phase whereas N4 was found to be the preferred site of protonation in aqueous medium. The mechanism of S‐alkylation reaction in GTU has also been studied. The formation of alkylated analogs of thiol isomers (alkylated guanylthiourea) is believed to take place via bimolecular process which involves alkyl cation attack at S atom followed by C? N bond rotation and deprotonation. The reactive intermediate RS(NH2)C? N? C(NH2)2+ belongs to the newly identified N(←L)2 class of species and provides the necessary dynamism for easy conversion of thione to thiol. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号