首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   2篇
化学   109篇
晶体学   1篇
力学   5篇
数学   1篇
物理学   32篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   5篇
  2013年   11篇
  2012年   17篇
  2011年   12篇
  2010年   6篇
  2009年   3篇
  2008年   12篇
  2007年   7篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   6篇
  2001年   6篇
  2000年   7篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1972年   1篇
排序方式: 共有148条查询结果,搜索用时 31 毫秒
1.
With the decrease in size of devices, rapid characterization of nano-devices is an inevitable necessity. It is shown that Mössbauer spectroscopy using synchrotron radiation from the advanced photon source provides such a tool of investigation. Results are presented and compared for conventional Mössbauer and Nuclear Forward Scattering for 151Eu-doped magnesium sulfide as an example, especially at low concentrations.  相似文献   
2.
The role of the electrostatic double-layer interactions in adsorption of colloid particles at solid/liquid interface was reviewed. The phenomenological formulation of the governing PB equation was presented with the expressions for the pressure tensor enabling one to calculate forces, torques and interaction energies between particles in electrolyte solutions. Then, the limiting analytical results for an isolated double-layer (both spherical and planar) were discussed in relation to the effective surface potential concept. The range of validity of the approximate expression connecting the surface potential and the effective surface potential with surface charge for various electrolytes was estimated. The results for double-layer systems were next presented including the case of two planar double-layers and two dissimilar spherical particles. Limiting solutions for short and long distances as well as for low potentials (linear HHF model) were discussed. The approximate models for calculating interactions of spheres, i.e., the extended Derjaguin summation method and the linear superposition approach (LSA) were also introduced. The results stemming from these models were compared with the exact numerical solution obtained in bispherical coordinate system. Possibilities of describing interactions of nonspherical particles (e.g., spheroids) in terms of the Derjaguin and the equivalent sphere methods were pointed out. In further part of the review the role of these electrostatic interactions in adsorption of colloid particles was discussed. Theoretical predictions were presented enabling a quantitative determination of both the initial adsorption flux for low surface coverages and the surface blocking effects for larger surface coverages. Possibility of bilayer adsorption for dilute electrolytes was mentioned. The theoretical results concerning both the adsorption kinetics and structure formation were then confronted with experimental evidences obtained in the well-defined systems, e.g., the impinging-jet cells and the packed-bed columns of monodisperse spherical particles. The experiments proved that the initial adsorption flux was considerably increased in dilute electrolytes whereas the monolayer coverages were considerably decreased due to lateral interactions among particles. It was then concluded that the good agreement between experimental and theoretical data confirmed the thesis of an essential role of the electrostatic interactions in adsorption phenomena of colloid particles.  相似文献   
3.
Structure of colloid silica determined by viscosity measurements   总被引:3,自引:0,他引:3  
The viscosity of nanosized colloid silica suspensions, used as binders in the investment casting, was determined as a function of their weight fraction reaching 52%. A new capillary viscometer was used whose construction eliminated sedimentation effects. The experiments have been carried out at fixed pH 10.0 and controlled ionic strength. It was found that for a low silica concentration range (weight fraction below 5%) the suspension viscosity increased more rapidly than the Einstein theory predicts. This anomalous behavior could not be explained in terms of the primary electroviscous effect predicted to be a few orders of magnitude smaller as observed. This discrepancy was accounted for by postulating a fuzzy, gel-like structure of colloid silicas used in our experiments. Hence, the apparent hydrodynamic radius of silica particles in aqueous suspensions was found to be larger than the primary particle size in accordance with previous observations. Based on this postulate, an apparent density of the silica sols was found to be 1.32-1.37 g/cm(3) instead of 2.2-2.32 g/cm(3) as determined from the suspension dilution method. This behavior was interpreted in terms of the core/shell model with high shell porosity, reaching 85%. Similarly, for higher concentration ranges, silica viscosity increased more rapidly with increased sol concentration than predicted by the Batchelor model derived for hard particles. The deviation was attributed to the secondary electroviscous effect stemming from the electrostatic interactions among silica particles in sheared suspensions. This effect has quantitatively been interpreted in terms of Russel's theory. On the other hand, for the high concentration range the experimental results were well accounted for by the Dougherty-Krieger model. By exploiting our experimental findings a sensitive method of determining the structure and apparent density of silica sols in aqueous media was proposed.  相似文献   
4.
5.
A new oblique impinging-jet (OBIJ) cell was developed, suitable for colloid deposition studies at various interfaces. In contrast to previously used orthogonal cells, the OBIJ construction makes possible direct microscope observations of particle deposition on nontransparent substrates. The cell performance was tested by studying kinetics of polystyrene latex particle deposition on mica. Two limiting cell configuration were used in the experiments: (i) the lower position (inverted microscope observation of substrate surface through air) and (ii) the upper position (observation of the substrate surface with adsorbed particles through the suspension layer). The dependence of local mass transfer rate (particle flux) on the position over the substrate surface was studied for various flow Reynolds numbers. It was demonstrated that deposition rate attained maximum at the flow stagnation point whose position was dependent on Re number. Moreover, it was shown that the local flux decreased at much slower rate when moving in the downstream direction, than for previously used impinging-jet cells. Consequently, the area of uniform transport conditions was larger, enabling more precise determination of the limiting particle flux at the stagnation-point. The dependence of the flux on Re number was systematically studied for various ionic strength of the suspension. It was demonstrated, in accordance with previous results for the ordinary impinging-jet, that the flux increased significantly for low ionic strength and high Re number. This phenomenon, referred to as the inverse salt effect, was interpreted in terms of the convective diffusion theory. The governing transport equation originating from this theory was solved numerically, for the region near the stagnation point, using the finite-difference method. These numerical solutions were used for nonlinear fitting of the flow intensity parameter dependence on the Re number. In this way the flow field in the vicinity of the stagnation point was fully characterized. It was concluded that the new cell can be exploited as an effective experimental tool for colloid deposition studies on various substrates.  相似文献   
6.
Synthesis of (--)-galactosylhydroxylysine (GHL, I), and its analogs (+)-2 and (+)-3, which are essential for development of assays for osteoporosis, is described starting from (2S,5R)-(+)-hydroxylysine (4).  相似文献   
7.
In the paper the influence of mechanical activation of the powder on the final dielectric properties lead-free Ba(Fe1/2Nb1/2)O3 (BFN) ceramic was examined. The BFN ceramics were obtained by 3-steps route. Firstly, the substrates were pre-homogenized in a planetary ball mill. Than, the powder was activated in vibratory mill (the shaker type SPEX 8000 Mixer Mill) for different duration between 25 h and 100 h. The influence of the milling time on the BFN powder was monitored by X-ray diffraction. The diffraction data confirmed that the milling process of the starting components is accompanied by partial synthesis of the BFN materials. The longer of the high-energy milling duration the powders results in increasing the amount of amorphous/nanocrystalline content. The mechanically activated materials were sintered in order to obtain the ceramic samples. During this temperature treatment the final crystallisation of the powder appeared what was confirmed by XRD studies. The performed dielectric measurements have revealed the reduction of the dielectric loss of the BFN ceramics compared to materials obtained by classic methods.  相似文献   
8.
Experimental nonequilibrium surface tension measurements of 1–9 nonanediol solutions obtained by the oscillating-jet method have been interpreted in terms of our theoretical predictions derived for a mixed-controlled adsorption kinetics of the surfactant. The surface tension values have been calculated from the Szyszkowski equation using the Langmuir model of surfactant adsorption. Our theoretical results, obtained by a numerical solution of the adsorption equations, agree well with experimental data giving a value of the kinetics Szyszkowski constant very similar to the thermodynamic equilibrium value determined from experimental measurements of the static surface tension of 1–9 nonanediol solutions of various concentration. The approximate kinetic equation derived by P. Joos, G. Bleys, and G. Petre (J. Chim. Phys.79, 387 (1982)) for purely barrier-controlled adsorption proved to be less accurate.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号