首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   5篇
化学   40篇
力学   2篇
数学   4篇
物理学   1篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   4篇
  2018年   2篇
  2016年   6篇
  2015年   6篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  1988年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
A novel zirconia-based hybrid organic-inorganic sol-gel coating was developed for capillary microextraction (CME) (in-tube SPME). High degree of chemical inertness inherent in zirconia makes it very difficult to covalently bind a suitable organic ligand to its surface. In the present work, this problem was addressed from a sol-gel chemistry point of view. Principles of sol-gel chemistry were employed to chemically bind a hydroxy-terminated silicone polymer (polydimethyldiphenylsiloxane, PDMDPS) to a sol-gel zirconia network in the course of its evolution from a highly reactive alkoxide precursor undergoing controlled hydrolytic polycondensation reactions. A fused silica capillary was filled with a properly designed sol solution to allow for the sol-gel reactions to take place within the capillary for a predetermined period of time (typically 15-30 min). In the course of this process, a layer of the evolving hybrid organic-inorganic sol-gel polymer got chemically anchored to the silanol groups on the capillary inner walls via condensation reaction. At the end of this in-capillary residence time, the unbonded part of the sol solution was expelled from the capillary under helium pressure, leaving behind a chemically bonded sol-gel zirconia-PDMDPS coating on the inner walls. Polycyclic aromatic hydrocarbons, ketones, and aldehydes were efficiently extracted and preconcentrated from dilute aqueous samples using sol-gel zirconia-PDMDPS coated capillaries followed by thermal desorption and GC analysis of the extracted solutes. The newly developed sol-gel hybrid zirconia coatings demonstrated excellent pH stability, and retained the extraction characteristics intact even after continuous rinsing with a 0.1 M NaOH solution for 24 h. To our knowledge, this is the first report on the use of a sol-gel zirconia-based hybrid organic-inorganic coating as an extraction medium in solid phase microextraction (SPME).  相似文献   
2.
A simple, fast, and sensitive analytical protocol using fabric‐phase sorptive extraction followed by high performance liquid chromatography with ultraviolet detection has been developed and validated for the extraction of five parabens including methylparaben, ethylparaben, propylparaben, butylparaben, and benzylparaben. In the present work, sol‐gel polyethylene glycol coated fabric‐phase sorptive extraction membrane is used for the preconcentration of parabens (polar) from complex matrices. The use of fabric‐phase sorptive extraction membrane provides a high surface area which offers high sorbent loading, shortened equilibrium time, and overall decrease in the sample preparation time. Various factors affecting the performance of fabric‐phase sorptive extraction, including extraction time, eluting solvent, elution time, and pH of the sample matrix, were optimized. Separation was performed using a mobile phase consisting of water:acetonitrile (63:37; v/v) at an isocratic elution mode at a flow rate of 0.9 mL/min with wavelength at 254 nm. The calibration curves of the target analytes were prepared with good correlation coefficient values (r2 > 0.9955). The limit of detection values range from 0.252 to 0.580 ng/mL. Finally, the method was successfully applied to various cosmetics and personal care product samples such as rose water, deodorant, hair serum, and cream with extraction recoveries ranged between 88 and 122% with relative standard deviation <5%.  相似文献   
3.
4.
Journal of Thermal Analysis and Calorimetry - The steady flow of a nanofluid (mixture of titanium dioxide and water) in a rectangular channel under the influence of an inclined magnetic field is...  相似文献   
5.
Green extraction techniques (GreETs) emerged in the last decade as greener and sustainable alternatives to classical sample preparation procedures aiming to improve the selectivity and sensitivity of analytical methods, simultaneously reducing the deleterious side effects of classical extraction techniques (CETs) for both the operator and the environment. The implementation of improved processes that overcome the main constraints of classical methods in terms of efficiency and ability to minimize or eliminate the use and generation of harmful substances will promote more efficient use of energy and resources in close association with the principles supporting the concept of green chemistry. The current review aims to update the state of the art of some cutting-edge GreETs developed and implemented in recent years focusing on the improvement of the main analytical features, practical aspects, and relevant applications in the biological, food, and environmental fields. Approaches to improve and accelerate the extraction efficiency and to lower solvent consumption, including sorbent-based techniques, such as solid-phase microextraction (SPME) and fabric-phase sorbent extraction (FPSE), and solvent-based techniques (μQuEChERS; micro quick, easy, cheap, effective, rugged, and safe), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), in addition to supercritical fluid extraction (SFE) and pressurized solvent extraction (PSE), are highlighted.  相似文献   
6.
Mixed-matrix membranes (MMMs) with combination of two distinct dimensional nanofillers (such as 1D-3D, 2D-3D, or 3D-3D, etc.) have drawn special attention for gas separation applications due to their concerted effects on gas permeation and mechanical properties. An amine-functionalized 1D multiwalled carbon nanotube (NH2-MWCNT) with exceptional mechanical strength and rapid gas transport was crosslinked with an amine-functionalized 3D metal-organic framework (UiO-66-NH2) with high CO2 affinity in a Schiff base reaction. The resultant crosslinked mixed-dimensional nanostructure was used as a nanofiller in a polysulfone (PSf) polymer matrix to explore the underlying synergy between 1D and 3D nanostructures on the gas separation performance of MMMs. Cross-sectional scanning electron microscopy and mapping revealed the homogenous dispersion of UiO-66@MWCNT in the polymer matrix. The MMM containing 5.0 wt. % UiO-66@MWCNT demonstrated a superior permeability 8.3 Barrer as compared to the 4.2 Barrer of pure PSf membrane for CO2. Moreover, the selectivity (CO2/CH4) of this MMM was enhanced to 39.5 from the 28.0 observed for pure PSf under similar conditions of pressure and temperature.  相似文献   
7.
8.
One-pot, three-component condensation of 2-hydroxybenzaldehyde derivatives, primary amines with alkyl isocyanides is reported. N-alkyl-2-(2-hydroxyphenyl)-2-iminoacetamide derivatives are generated presumably via the preliminary formation of N, N′-disubstituted benzo[b]furan-2,3-diamines and subsequent oxidation with molecular oxygen.   相似文献   
9.
A facile one-pot synthesis of chromene bearing novel spiropyrrolidine-oxindoles has been accomplished by the [3+‏2]-cycloaddition reaction of 3-acetyl-2H-chromen-2-ones with azomethine ylides derived in situ from isatin or N-methyl isatin with sarcosine.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号