首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
化学   42篇
数学   1篇
物理学   8篇
  2016年   1篇
  2011年   4篇
  2009年   1篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
  1984年   1篇
  1977年   1篇
  1975年   1篇
  1973年   5篇
  1972年   1篇
  1966年   1篇
  1896年   1篇
排序方式: 共有51条查询结果,搜索用时 0 毫秒
1.
The nitridorhenium(V) complexes ReNCl(2)(PCy3)(2) (1), ReNBr(2)(PCy3)(2) (2), ReNCl(2)(PPh3)(2) (3), and ReNBr(2)(PPh3)(2) (4) produce structured emission spectra upon excitation at low temperature. The origin, E(00), occurs at 15 775, 16 375, 15 875, and 16 300 cm(-1), respectively. The vibronic peaks are regularly spaced with an average energy separation corresponding to the Re triple bond N stretching frequency. The nitridorhenium stretching frequency ranges from 1095 to 1101 cm(-1), as determined by Raman and IR spectroscopy. The excited-state distortions are calculated by fitting the emission spectra. The excited state arises primarily from a d(xy) (ReN nonbonding) to d(yz) (ReN pi antibonding) transition. The rhenium-nitrogen bond length in the excited state is 0.08 A longer than in the ground electronic state, which is consistent with the difference in bond lengths of ReN bonds of bond order 3 and bond order 2.5 as determined from molecular structures.  相似文献   
2.
3.
4.
Time-resolved 2H NMR spectroscopy is used to monitor the progress of and gain kinetic information for a variety of reactions in different ionic media.  相似文献   
5.
6.
The title complexes, the Re(O)L(2)(Solv)(+) complexes (L = hoz, 2-(2'-hydroxyphenyl)-2-oxazoline(-) or thoz, 2-(2'-hydroxyphenyl)-2-thiazoline(-); Solv = H(2)O or CH(3)CN), are effective catalysts for the following fundamental oxo transfer reaction between closed shell molecules: XO + Y --> X + YO. Among suitable oxygen acceptors (Y's) are organic thioethers and phosphines, and among suitable oxo donors (XO's) are pyridine N-oxide (PyO), t-BuOOH, and inorganic oxyanions. One of the remarkable features of these catalysts is their high kinetic competency in effecting perchlorate reduction by pure atom transfer. Oxo transfer to rhenium(V) proceeds cleanly to afford the cationic dioxorhenium(VII) complex Re(O)(2)L(2)(+) in a two-step mechanism, rapid substrate (XO) coordination to give the precursor adduct cis-Re(V)(O)(OX)L(2)(+) followed by oxygen atom transfer (OAT) as the rate determining step. Electronic variations with PyO derivatives demonstrated that electron-withdrawing substituents accelerate the rate of Re(VII)(O)(2)L(2)(+) formation from the precursor adduct cis-Re(V)(O)(OX)L(2)(+). The activation parameters for OAT with picoline N-oxide and chlorate have been measured; the entropic barrier to oxo transfer is essentially zero. The potential energy surface for the reaction of Re(O)(hoz)(2)(OH(2))(+) with PyO was defined, and all pertinent intermediates and transition states along the reaction pathway were located by density functional theory (DFT) calculations (B3LYP/6-31G). In the second half of the catalytic cycle, Re(O)(2)L(2)(+) reacts with oxygen acceptors (Y's) in second-order reactions with associative transition states. The rate of OAT to substrates spans a remarkable range of 0.1-10(6) L mol(-)(1) s(-)(1), and the substrate reactivity order is Ph(3)P > dialkyl sulfides > alkyl aryl sulfides > Ph(2)S approximately DMSO, which demonstrates electrophilic oxo transfer. Competing deactivation and inhibitory pathways as well as their relevant kinetics are also reported.  相似文献   
7.
Bis(peroxo)vanadium(V) complexes are widely investigated as anticancer agents. They exert their antitumor and cyctotoxic effects through inhibition of tyrosine phosphatases and DNA cleavage, respectively. The latter process remains poorly understood. The mechanism of DNA cleavage by NH(4)[(phen)V(O)(eta(2)-O(2))(2)] (phen = 1,10-phenanthroline) was investigated. Kinetic studies on DNA cleavage revealed that the complex is a single-strand nicking agent with no specificity. EPR experiments using 2,2,6,6-tetramethyl-4-piperidone (TMP) and 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) as spin-traps for singlet oxygen and hydroxyl radical, respectively, implicated hydroxyl radical production upon photodecomposition of bis(peroxo)vanadium(V). This was corroborated by benzoate inhibition of DNA strand scission and stoichiometric oxidation of 2-propanol to acetone upon irradiation of bis(peroxo)vanadium(V) phenanthroline. High-resolution polyacrylamide gel analysis of the vanadium cleavage reaction and [Fe(II)EDTA](2)(-)/H(2)O(2) resulted in comigration of "ladder" pattern bands, which superimposed when both reactions were run on the same lane. These findings identify hydroxyl radical produced from the photooxidation of the peroxo ligand on vanadium as the active species in DNA cleavage.  相似文献   
8.
The cationic oxorhenium(V) complex [Re(O)(hoz)(2)(CH(3)CN)][B(C(6)F(5))(4)] [1; Hhoz = 2-(2'-hydroxyphenyl)-2-oxazoline] reacts with aryl azides (N(3)Ar) to give cationic cis-rhenium(VII) oxoimido complexes of the general formula [Re(O)(NAr)(hoz)(2)][B(C(6)F(5))(4)] [2a-2f; Ar = 4-methoxyphenyl, 4-methylphenyl, phenyl, 3-methoxyphenyl, 4-chlorophenyl, and 4-(trifluoromethyl)phenyl]. The kinetics of formation of 2 in CH(3)CN are first-order in both azide (N(3)Ar) and oxorhenium(V) complex 1, with second-order rate constants ranging from 3.5 × 10(-2) to 1.7 × 10(-1) M(-1) s(-1). A strong inductive effect is observed for electron-withdrawing substituents, leading to a negative Hammett reaction constant ρ = -1.3. However, electron-donating substituents on phenyl azide deviate significantly from this trend. Enthalpic barriers (ΔH(?)) determined by the Eyring-Polanyi equation are in the range 14-19 kcal mol(-1) for all aryl azides studied. However, electron-donating 4-methoxyphenyl azide exhibits a large negative entropy of activation, ΔS(?) = -21 cal mol(-1) K(-1), which is in sharp contrast to the near zero ΔS(?) observed for phenyl azide and 4-(trifluoromethyl)phenyl azide. The Hammett linear free-energy relationship and the activation parameters support a change in the mechanism between electron-withdrawing and electron-donating aryl azides. Density functional theory predicts that the aryl azides coordinate via N(α) and extrude N(2) directly. For the electron-withdrawing substituents, N(2) extrusion is rate-determining, while for the electron-donating substituents, the rate-determining step becomes the initial attack of the azide. The barriers for these two steps are inverted in their order with respect to the Hammett σ values; thus, the Hammett plot appears with a break in its slope.  相似文献   
9.
This article describes the synthesis of a new heterocycle, pyrido[2,3,f]phtalazine and three new diformylquinolincs.  相似文献   
10.
The synthesis of two new heterocycles is described: pyrido-[2,3-d]-.s-triazolo[ 3,4-f] pyrimidine and pyrido[3,2-d]-.s-triayzolo-[3,4-f] pyrimidine. 4-[I'-Pyrazolyl]pyrido[2,3-d]pyrimidines and 4-[1′-pyrazoly1] pyrido[ 3,2-d] pyrimidine are obtained by the action of 4-hydrazinopyrido[2,3-d]pyrimidine and 4-hydrazinopyrido-[3,2-d]pyrimidine with several β-diketones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号