首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   6篇
物理学   4篇
  2017年   1篇
  2008年   3篇
  2007年   2篇
  2003年   2篇
  1997年   1篇
  1996年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (<30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-T c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain. In overdoped and underdoped in-plane compressed (the strain is induced by the choice of substrate) ≈15 nm thin La2 − x Sr x CuO4 (LSCO) films we almost double T c to 40 K, from 20 K and 24 K, respectively. Yet the Fermi surface (FS) remains essentially two-dimensional. In contrast, ARPES data under tensile strain exhibit the dispersion that is three-dimensional, yet T c drastically decreases. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO2 plane, enhances the two-dimensional character of the dispersion and increases T c, while the tensile strain acts in the opposite direction and the resulting dispersion is three-dimensional. We have established the shape of the FS for both cases, and all our data are consistent with other ongoing studies, like EXAFS. As the actual lattice of cuprates is like a ‘Napoleon-cake’, i.e. rigid CuO2 planes alternating with softer ‘reservoir’, that distort differently under strain, our data rule out all oversimplified two-dimensional (rigid lattice) mean field models. The work is still in progress on optimized La-doped Bi-2201 films with enhanced T c.   相似文献   
2.
Angle-resolved photoemission spectroscopy reveals very surprising strain-induced effects on the electronic band dispersion of epitaxial La(2-x)Sr(x)CuO(4-delta) thin films. In strained films we measure a band that crosses the Fermi level (E(F)) well before the Brillouin zone boundary. This is in contrast to the flat band reported in unstrained single crystals and in our unstrained films, as well as in contrast to the band flattening predicted by band structure calculations for in-plane compressive strain. In spite of the density of states reduction near E(F), the critical temperature increases in strained films with respect to unstrained samples. These results require a radical departure from commonly accepted notions about strain effects on high temperature superconductors, with possible general repercussions on superconductivity theory.  相似文献   
3.
It is widely known that macromolecules, such as proteins, can control the nucleation and growth of inorganic solids in biomineralizing organisms. However, what is not known are the complementary molecular interactions, organization, and rearrangements that occur when proteins interact with inorganic solids during the formation of biominerals. The organic-mineral interface (OMI) is expected to be the site for these phenomena, and is therefore extraordinarily interesting to investigate. In this report, we employ X-ray absorption near edge (XANES) spectromicroscopy to investigate the electronic structure of both calcium carbonate mineral crystals and polypeptides, and detect changing bonds at the OMI during crystal growth in the presence of polypeptides. We acquired XANES spectra from calcium carbonate crystals grown in the presence of three mollusk nacre-associated polypeptides (AP7N, AP24N, n16N) and in the presence of a sea urchin spicule matrix protein, LSM34. All these model biominerals gave similar results, including the disruption of CO bonds in calcite and enhancement of the peaks associated with C-H bonds and C-O bonds in peptides, indicating ordering of the amino acid side chains in the mineral-associated polypeptides and carboxylate binding. This is the first evidence of the mutual effect of calcite on peptide chain and peptide chain on calcite during biomineralization. We also show that these changes do not occur when Asp and Glu are replaced in the n16N sequence with Asn and Gln, respectively, demonstrating that carboxyl groups in Asp and Glu do participate in polypeptide-mineral molecular associations.  相似文献   
4.
The isotope 99Tc is highly soluble and poorly adsorbed by natural materials under oxidizing conditions, thus being of particular concern for radioactive waste disposal. Activated carbon can potentially be used as an adsorbent for removing Tc from aqueous solutions. We have tested six commercial activated carbon materials for their capabilities for sorption of pertechnetate (TcO4-). The tested materials can be grouped into two distinct types: Type I materials have high sorption capabilities with the distribution coefficients (Kd) varying from 9.5 x 10(5) to 3.2 x 10(3) ml/g as the pH changes from 4.5 to 9.5, whereas type II materials have relatively low sorption capabilities with Kd remaining more or less constant (1.1 x 10(3)-1.8 x 10(3) ml/g) over a similar pH range. The difference in sorption behavior between the two types of materials is attributed to the distribution of surface functional groups. The predominant surface groups are identified as carboxylic and phenolic groups. The carboxylic group can be further divided into three subgroups, A, B, and C, in the order of increasing acidity. The high sorption capabilities of type I materials are found to be caused by the presence of a large fraction of carboxylic subgroups A and B, while the low sorption capabilities of type II materials are due to the exclusive presence of phenolic and carboxylic subgroup C. Therefore, the performance of activated carbon for removing TcO4- can be improved by enhancing the formation of carboxylic subgroups A and B during materials processing.  相似文献   
5.

The acquisition of time-stamped list data provides additional information useful to gamma-spectrometry analysis. A novel technique is described that uses non-linear least-squares fitting and the Levenberg–Marquardt algorithm to simultaneously determine parent-daughter atoms from time sequence measurements of only the daughter radionuclide. This has been demonstrated for the radioactive decay of short-lived radon progeny (214Pb/214Bi, 212Pb/212Bi) described using the Bateman first-order differential equation. The calculated atoms are in excellent agreement with measured atoms, with a difference of 1.3–4.8% for parent atoms and 2.4–10.4% for daughter atoms. Measurements are also reported with reduced uncertainty. The technique has potential to redefine gamma-spectrometry analysis.

  相似文献   
6.
A series of novel open-chain and cyclic conformationally constrained α,α-disubstituted (R)- and (S)-glycine derivatives (‘α-chimeras’) combining side chains of Asp, Glu, Leu, Phe, Ser, and Val have been efficiently synthesized by using α-alkylation of racemic 4-monosubstituted 2-phenyl-1,3-oxazol-5(4H)-ones of type 5 , resolution after reaction with (S)-phenylalanine cyclohexylamide ( 8 ) as chiral auxiliary, a novel azlactone/dihydrooxazole interconversion reaction to synthesize optically pure α-substituted (R)- and (S)-serine derivatives coupled with succinimide-ring formation of aspartic-acid derivatives. Based on X-ray structures of (R,S)- 9b , (R,S)- 11c , (R,S)- 18 , and (S,S)- 30 , the absolute configuration of these novel amino-acid building blocks could be unambiguously determined and their preferred conformations in the crystalline state be assessed. The high preference of the open-chain derivatives (R,S)- 1 , (S,S)- 3 , and (R,S)- 11c for β-turn type-I conformations, as well as of the succinimide derivatives (R,S)- 2 , (S,S)- 19 , (S,S)- 24 , (S,S,S)- 26 , and (R,S)- 29 for β-turn type-II conformations and of (S,S)- 4 , (R,S)- 18 , (R,S)- 23 , and (S,S)- 30 for β-turn type-II′ conformations could be confirmed in solution by using CD and NMR spectroscopy. Finally, the spiro derivatives (R,S)- 29 and (S,S)- 30 incorporating the ‘α-chimera’ of Asp/Glu constitute doubly constrained peptide building blocks combining the properties of α-substituted prolines and aspartimides.  相似文献   
7.
We report the transient optical pump-probe reflectivity measurements on single and double layer cuprate single crystals and thin films of ten different stoichiometries. We find that with sufficiently low fluence the relaxation time ( of all samples exhibits a power law divergence with temperature . Further, the divergence has an onset temperature above the superconducting transition temperature for all superconducting samples. Possible causes of this divergence are discussed.Received: 30 June 2003, Published online: 23 December 2003PACS: 74.78.Bz High-T c films - 74.72.-h Cuprate superconductors (high-T c and insulating parent compounds) - 74.25.Gz Optical propertiesM.L. Schneider: Present address: NIST, mc 816.01, 325 Broadway, Boulder, CO 80305-3328, USA  相似文献   
8.
We analyze the structure of Haliotis rufescens nacre, or mother-of-pearl, using synchrotron spectromicroscopy and x-ray absorption near-edge structure spectroscopy. We observe imaging contrast between adjacent individual nacre tablets, arising because different tablets have different crystal orientations with respect to the radiation's polarization vector. Comparing previous data and our new data with models for columnar nacre growth, we find the data are most consistent with a model in which nacre tablets are nucleated by randomly distributed sites in the organic matrix layers.  相似文献   
9.
Many biominerals, including mollusk and echinoderm shells, avian eggshells, modern and fossil bacterial sediments, planktonic coccolithophores, and foraminifera, contain carbonates in the form of biogenic aragonite or calcite. Here we analyze biogenic and geologic aragonite using different kinds of surface- and bulk-sensitive X-ray absorption near-edge structure (XANES) spectroscopy at the carbon K-edge, as well as high-resolution scanning transmission X-ray microscopy (STXM). Besides the well-known main pi* and sigma* carbonate peaks, we observed and fully characterized four minor peaks, at energies between the main pi* and sigma* peaks. As expected, the main peaks are similar in geologic and biogenic aragonite, while the minor peaks differ in relative intensity. In this and previous work, the minor peaks appear to be the ones most affected in biomineralization processes, hence the interest in characterizing them. Peak assignment was achieved by correlation of polarization-dependent behavior of the minor peaks with that of the main pi* and sigma* peaks. The present characterization provides the background for future studies of aragonitic biominerals.  相似文献   
10.
We describe a versatile novel approach for the synthesis of 2, 4, 6-trisubstituted pyrimidines on solid support. Thus, polymer-boun J thiouronium salt 2 reacted in high yield in a cyclocondensation reaction with the acetylenic ketones 3 to form, after tert-butyl-ester cleavage, the polymer-bound carboxylic acids 4 , which were cleaved by oxidation with 3-chloroperbenzoic acid and pyrrolidine to form the 2-pyrrolidinylpyrimidine-4-carboxylic acids 6a-c in high yields and purities without further purification (Scheme 1). Alternatively, acid 4a was subjected to an Ugi four-component condensation which gave the polymer-bound Ugi products 9a-e in good yields (Scheme 2). Multidirectional cleavage reaction of sulfone 8a with different nucleophiles resulted in the clean formation of pyrimidine-4-carboxamides 10–13 (Scheme 3). This strategy combines efficiently solid-phase chemistry with a multicomponent reaction and a multidirectional cleavage step to form highly diverse pyrimidines in a parallel array.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号