首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   10篇
  国内免费   2篇
化学   149篇
晶体学   3篇
力学   11篇
数学   18篇
物理学   43篇
  2024年   2篇
  2023年   3篇
  2022年   21篇
  2021年   11篇
  2020年   10篇
  2019年   4篇
  2018年   8篇
  2017年   5篇
  2016年   10篇
  2015年   9篇
  2014年   9篇
  2013年   28篇
  2012年   18篇
  2011年   10篇
  2010年   13篇
  2009年   9篇
  2008年   10篇
  2007年   11篇
  2006年   4篇
  2005年   7篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1987年   1篇
  1985年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有224条查询结果,搜索用时 0 毫秒
1.
The aim of this paper is to investigate laminar-turbulent transition in a mixed convection phenomenon occurring in a horizontal rectangular duct. Indeed, laminar-turbulent transition is well known in the case of forced convection but the presence of secondary flow induced by natural convection on this transition is not well highlighted. In this study, we will not be concerned by determining a critical threshold value of a Reynolds number of transition but only to estimate the degree of turbulence in the transition regime, i.e. weak turbulence in the case of a mixed convection phenomenon. This is possible thanks to the application of the wavelet transform. The calculation of the Hölder exponent, associated with the maximum value of the singularity spectrum for various experimental conditions allows the degree of turbulence to be measured. The variation of the Hölder exponent versus heat flux and Reynolds number enables us to show that there are two ways to go towards turbulence: thermal by increasing heat flux and hydrodynamic by increasing fluid velocity.  相似文献   
2.
In this paper, a new method is outlined for the estimation of coupling efficiency between a source laser and a WGPD. Internal quantum efficiencies as high as 72% (for 0.15 μm device) and 86.5% (for 0.5 μm device) are achieved.  相似文献   
3.
A sensor for measuring adsorption on a substrate has been designed including a contactless detection scheme, called supercapacitive admittance tomoscopy (SCAT). The sensor comprises a thin dielectric layer with two parallel band electrodes on the one side and a chemically modified surface on the other onto which the adsorption of molecules occurs. Upon application of a high frequency ac voltage between the two electrodes, a capacitive coupling is established across the dielectric layer, and the admittance measured depends on the surface state of the chemically modified interface. On the basis of this principle, a flow sensor has been developed to measure sensorgrams to follow the dynamics of the adsorption and has been tested for the adsorption of IgG on the modified surface.  相似文献   
4.
The use of 4.2 nm gold nanoparticles wrapped in an adsorbates shell and embedded in a TiO2 metal oxide matrix gives the opportunity to investigate ultrafast electron-electron scattering dynamics in combination with electronic surface phenomena via the surface plasmon lifetimes. These gold nanoparticles (NPs) exhibit a large nonclassical broadening of the surface plasmon band, which is attributed to a chemical interface damping. The acceleration of the loss of surface plasmon phase coherence indicates that the energy and the momentum of the collective electrons can be dissipated into electronic affinity levels of adsorbates. As a result of the preparation process, gold NPs are wrapped in a shell of sulfate compounds that gives rise to a large density of interfacial molecules confined between Au and TiO2, as revealed by Fourier-transform-infrared spectroscopy. A detailed analysis of the transient absorption spectra obtained by broadband femtosecond transient absorption spectroscopy allows separating electron-electron and electron-phonon interaction. Internal thermalization times (electron-electron scattering) are determined by probing the decay of nascent nonthermal electrons (NNEs) and the build-up of the Fermi-Dirac electron distribution, giving time constants of 540 to 760 fs at 0.42 and 0.34 eV from the Fermi level, respectively. Comparison with literature data reveals that lifetimes of NNEs measured for these small gold NPs are more than four times longer than for silver NPs with similar sizes. The surprisingly long internal thermalization time is attributed to an additional decay mechanism (besides the classical e-e scattering) for the energy loss of NNEs, identified as the ultrafast chemical interface scattering process. NNEs experience an inelastic resonant scattering process into unoccupied electronic states of adsorbates, that directly act as an efficient heat bath, via the excitation of molecular vibrational modes. The two-temperature model is no longer valid for this system because of (i) the temporal overlap between the internal and external thermalization process is very important; (ii) a part of the photonic energy is directly transferred toward the adsorbates (not among "cold" conduction band electrons). These findings have important consequence for femtochemistry on metal surfaces since they show that reactions can be initiated by nascent nonthermal electrons (as photoexcited, out of a Fermi-Dirac distribution) besides of the hot electron gas.  相似文献   
5.
In recent years, searching and retrieving relevant images from large databases has become an emerging challenge for the researcher. Hashing methods that mapped raw data into a short binary code have attracted increasing attention from the researcher. Most existing hashing approaches map samples to a binary vector via a single linear projection, which restricts the flexibility of those methods and leads to optimization problems. We introduce a CNN-based hashing method that uses multiple nonlinear projections to produce additional short-bit binary code to tackle this issue. Further, an end-to-end hashing system is accomplished using a convolutional neural network. Also, we design a loss function that aims to maintain the similarity between images and minimize the quantization error by providing a uniform distribution of the hash bits to illustrate the proposed technique’s effectiveness and significance. Extensive experiments conducted on various datasets demonstrate the superiority of the proposed method in comparison with state-of-the-art deep hashing methods.  相似文献   
6.
Twenty-four analogs based on triazinoindole bearing benzimidazole/benzoxazole moieties (1–25) were synthesized. Utilizing a variety of spectroscopic methods, including 1H-, 13C-NMR, and HREI-MS, the newly afforded compounds (1–25) were analyzed. The synthesized analogs were tested against urease enzyme (in vitro) as compared to the standard thiourea drug. All triazinoindole-based benzimidazole/benzoxazole analogs (1–25) exhibited moderate to excellent inhibition profiles, having IC50 values of 0.20 ± 0.01 to 36.20 ± 0.70 μM when evaluated under the positive control of thiourea as a standard drug. To better understand the structure–activity relationship, the synthesized compounds were split into two groups, “A” and “B.” Among category “A” analogs, analogs 8 (bearing tri-hydroxy substitutions at the 2,4,6-position of aryl ring C) and 5 (bearing di-hydroxy substitutions at the 3,4-position of aryl ring C) emerged as the most potent inhibitors of urease enzyme and displayed many times more potency than a standard thiourea drug. Besides that, analog 22 (which holds di-hydroxy substitutions at the 2,3-position of the aryl ring) and analog 23 (bearing ortho-fluoro substitution) showed ten-fold-enhanced inhibitory potential compared to standard thiourea among category “B” analogs. Molecular docking studies on the active analogs of each category were performed; the results obtained revealed that the presence of hydroxy and fluoro-substitutions on different positions of aryl ring C play a pivotal role in binding interactions with the active site of the targeted urease enzyme.  相似文献   
7.
Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it has been considered as a traditional medicine for decades. Apigenin shows synergistic effects in combined treatment with sorafenib in the HepG2 human cell line (HCC) in less time and statistically reduces the viability of tumor cells, migration, gene expression and apoptosis. The combination of anti-cancerous drugs with apigenin has shown health promoting potential against various cancers. It can prevent cell mobility, maintain the cell cycle and stimulate the immune system. Apigenin also suppresses mTOR activity and raises the UVB-induced phagocytosis and reduces the cancerous cell proliferation and growth. It also has a high safety threshold, and active (anti-cancer) doses can be gained by consuming a vegetable and apigenin rich diet. Apigenin also boosted autophagosome formation, decreased cell proliferation and activated autophagy by preventing the activity of the PI3K pathway, specifically in HepG2 cells. This paper provides an updated overview of apigenin’s beneficial anti-inflammatory, antibacterial, antiviral, and anticancer effects, making it a step in the right direction for therapeutics. This study also critically analyzed the effect of apigenin on cancer cell signaling pathways including the PI3K/AKT/MTOR, JAK/STAT, NF-κB and ERK/MAPK pathways.  相似文献   
8.
We report the synthesis of conceptually new prototypes of molecular winches with the ultimate aim to investigate the work performed by a single ruthenium-based molecular motor anchored on a surface by probing its ability to pull a load upon electrically-driven directional rotation. According to a technomimetic design, the motor was embedded in a winch structure, with a long flexible polyethylene glycol chain terminated by an azide hook to connect a variety of molecular loads. The structure of the motor was first derivatized by means of two sequential cross-coupling reactions involving a penta(4-halogenophenyl)cyclopentadienyl hydrotris(indazolyl)borate ruthenium(II) precursor and the resulting benzylamine derivative was next exploited as key intermediate in the divergent synthesis of a family of nanowinch prototypes. A one-pot method involving sequential peptide coupling and Cu-catalyzed azide-alkyne cycloaddition was developed to yield four loaded nanowinches, with load fragments encompassing triptycene, fullerene and porphyrin moieties.  相似文献   
9.
A series of random polyesteramides (PEAs) within a range of molar composition from 90/10 to 10/90 were synthesized by a direct melt polycondensation of lactic acid and β-alanine. Their structures were fully characterized by NMR spectroscopy. The resulting copolymers are amorphous; they are thermally stable to temperatures up to 254°C, and present increasing glass transition temperatures at increasing amide content. The copolymers were also characterized by FTIR and viscosimetry measurements.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号