首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   3篇
  国内免费   5篇
化学   13篇
力学   12篇
综合类   1篇
数学   8篇
物理学   8篇
  2022年   1篇
  2021年   3篇
  2020年   10篇
  2019年   1篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   7篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2000年   1篇
  1997年   3篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有42条查询结果,搜索用时 31 毫秒
1.
In an accelerator-driven subcritical system (ADS), a high-performance spallation neutron source is used to feed the subcritical reactor. Neutron generation depends on the proton beam intensity. If the beam intensity is increased by a given factor, the number of generated neutrons will increase. The mechanism yielding a high rate of neutron production per energy is the spallation process, and this mechanism produces a very high-energy deposition in the spallation target material. Producing a high rate of neutrons is accompanied by creation of problems of decay heat cooling and radiological protection. As a first step in designing a full-scale industrial ADS, a small-scale experimental ADS, which is similar to the European experimental ADS (XADS) is analysed. The analysis presented in this paper is based on lead–bismuth eutectic (LBE) cooled XADS-type experimental reactors, designed during the European experimental (PDS-XADS) project. Computational fluid dynamics analysis has been carried out for the spallation target. Steady state behaviour and shear stress transport turbulence model with the automatic wall treatment were applied in the present analysis.  相似文献   
2.
Asensitive and selective method employing chemiluminescence(CL) coupled with flow injection(FI) is reported for nalbuphine hydrochloride(NAL) assay in pharmaceutical formulations. The enhancement effect of NAL on the CL reaction between tris(2,2'-bipyridyl)ruthenium(II) chloride-diperiodatocuprate(III) {Ru[(bpy)3]2+-Cu(III) complex} in acidic medium is used as analytical measurement. The optimal conditions of the CL reaction were sulfuric acid 1.0×10-3 mol/L, Ru[(bpy)3]2+ 7.5×10-5 mol/L, Cu(III)/Ag(III) complexes 4.0×10-4/5.0×10-4 mol/L, sample loop volume of 120 μL and flow rate of 2.5 mL/min. The sensitivities of the method in terms of detection(S/N=3) and quantification(S/N=10) limits are 5×10-4 and 0.001 ppm(1 ppm=1 mg/L), respectively. The linear response of the instrument in the form of CL intensity with respect to NAL concentration is over the range 0.001-15.0 ppm(R2=0.9999) with relative standard deviation from 0.8% to 3.2% and injection throughput of 120 injection/h. The applications of the method include the quantitative analysis of NAL in pharmaceutical injection samples. Variations and the average results of the proposed method are not signi-ficantly different from the results of a reported method by applying F- and paired student t-test. The most likely CL reaction mechanism is written in accordance with spectrophotometric and CL studies.  相似文献   
3.
A nanofluid is composed of a base fluid component and nanoparticles, in which the nanoparticles are dispersed in the base fluid. The addition of nanoparticles into a base fluid can remarkably improve the thermal conductivity of the nanofluid, and such an increment of thermal conductivity can play an important role in improving the heat transfer rate of the base fluid. Further, the dynamics of non-Newtonian fluids along with nanoparticles is quite interesting with numerous industrial applications. The present predominately predictive modeling studies the flow of the viscoelastic Oldroyd-B fluid over a rotating disk in the presence of nanoparticles. A progressive amendment in the heat and concentration equations is made by exploiting the Cattaneo-Christov heat and mass flux expressions. The characteristic of the Lorentz force due to the magnetic field applied normal to the disk is studied. The Buongiorno model together with the Cattaneo-Christov theory is implemented in the Oldroyd-B nanofluid flow to investigate the heat and mass transport mechanism. This theory predicts the characteristics of the fluid thermal and solutal relaxation time on the boundary layer flow. The von K′arm′an similarity functions are utilized to convert the partial differential equations(PDEs) into ordinary differential equations(ODEs). A homotopic approach for obtaining the analytical solutions to the governing nonlinear problem is carried out. The graphical results are obtained for the velocity field, temperature, and concentration distributions. Comparisons are made for a limiting case between the numerical and analytical solutions, and the results are found in good agreement. The results reveal that the thermal and solutal relaxation time parameters diminish the temperature and concentration distributions, respectively. The axial flow decreases in the downward direction for higher values of the retardation time parameter. The impact of the thermophoresis parameter boosts the temperature distribution.  相似文献   
4.
AHMED OSMAN 《Pramana》2011,77(6):1069-1078
Kaon nucleon elastic scattering is studied using chiral SU(3) quark model including antiquarks. Parameters of the present model are essentially based on nucleon–nucleon and nucleon–hyperon interactions. The mass of the scalar meson σ is taken as 635 MeV. Using this model, the phase shifts of the S and P partial waves of the kaon nucleon elastic scattering are investigated for isospins 0 and 1. The results of numerical calculations of different partial waves are in good agreement with experimental data.  相似文献   
5.
A redundant robot has more degrees of freedom than those neededto position the Robert end-effector uniquely. In a usual robotictask, only end-effector position trajectory is specified. Thejoint position trajectory is unknown, and it must be selectedfrom a self-motion manifold for a specified end-effector. Inmany situations, the robot dynamic parameters such as the linkmass, inertia, and joint viscous friction are unknown. The lackof knowledge of the joint trajectory and the dynamic parametersmake it difficult to control redundant robots. In this paper we show, through careful formulation of the problem,that the adaptative control of redundant robots can be addressedas a reference-velocity traking problem in the joint space.A control law ensures bounded estimation of the unknown dynamicparameters of the robot, and the convergence to zero of thevelocity traking error is derived. To ensure the joint motionon the self-motion manifold remains bounded, a homeomorphictransformation is found. This transformation decomposes thedynamics of the velocity tracking error into a cascade systemconsisting of the dynamics in the end-effector error coordinatesand the dynamics on the self-motion manifold. The dynamics onthe self-motion manifold is shown to be related to the conceptof zero dynamics. In the shown that, if the reference jointtrajectory is selected to optimize a certain type of objectivefunction, then stable dynamics on the self-motion manifold result.This ensures the overall stability of the adaptive system. Detailedsimulations are given to test the theoretical developments.The proposed adaptive scheme does not require measurements ofthe joint acceleration or the inversion of the inertia matrixof the robot.  相似文献   
6.
A method to design a corrugated optical waveguide filter by modulating the corrugation width profile is proposed. This method is based on combined applications of the Fourier transformation and the F-matrix formalism. The method achieves the spatial profile of the corrugation width required to design a filter with any specified spectral profile of the reflection coefficient. The idea of the technique is that the spatial variation of the effective refractive index can be transformed, with the help of the F-matrix formalism, to variation of the corrugation width while maintaining a constant amplitude of the refractive index variation. Two examples are given applying the technique to the design of optical waveguide filters with reflectivity profiles of two- and four-rejection bands.  相似文献   
7.
The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is considered. The problem of strong magnetic field is solved in 1D nonuniform plane plasma waveguide. The equation describing the spatial part of the electric potential is obtained. Also, the growth rates and conditions of the parametric instability for periodic and aperiodic cases are obtained. It is found that the spatial nonuniformity of the plasma exerts a stabilizing effect on the API. It is shown that the growth rates of periodic and aperiodic API in nonuniform plasma are less compared to that of uniform plasma.  相似文献   
8.
The accuracy of MUSCL upwind and Yee-Roe-Davis symmetric TVD schemes for simulating low Mach number flow is studied through a numerical experiment of the 2-D lid driven cavity problem. The steady slate solution is reached by using a marching approach based on the pseudocompressibilty method in conjunction with implicit approximate factorization. A finite volume discretization of the conservation equations is used with a four level multigrid method to accelerate the convergence. The tests performed which were in the range of 100 ≤ Re ≤ 5000, show that the Yee-Roe-Davis symmetric scheme generates results in very good agreement with the benchmark results over this range of Re. The MUSCL upwind scheme accuracy deteriorates with the increasing Re.  相似文献   
9.
Based on the functional properties of electrospun cellulose nanofibers(CNF), scientists are showing substantial interest to enhance the aesthetic properties. However, the lower color yield has remained a big challenge due to the higher surface area of nanofibers. In this study, we attempted to improve the color yield properties of CNF by the pad-steam dyeing method. Neat CNF was obtained by deacetylation of electrospun cellulose acetate(CA) nanofibers. Three different kinds of reactive dyes were used and pad-steam dyeing parameters were optimized. SEM images revealed smooth morphology with an increase in the average diameter of nanofibers. FTIR results showed no change in the chemical structure after dyeing of CNF. Color fastness results demonstrated excellent ratings for reactive dyes, which indicate good dye fixation properties and no color loss during the washing process. The results confirm that the pad-steam dyeing method can be potentially considered to improve the aesthetic properties of CNF, which can be utilized for functional garments, such as breathable raincoats and disposable face masks.  相似文献   
10.
The structure of 1-hydroxy-3,5-dimethoxy-9 H-xanthen-9-one isolated from chloroform extract of Ajuga bracteosa root was analyzed by single-crystal X-ray diffraction. DPPH(1,1-diphenyl-2-picryl hydrazyl), ABTS(2,2?-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities(RSA) and Fe2+ chelating activities were carried out to determine the antioxidant potential of the compound. RSA values for the compound were 96%, 96% and 96% for all the three activities respectively at maximum concentration of the compound(100 μ gmL-1) with the IC50 values of 3.40, 4.86 and 0.10(μ gmL-1). Antidiabetic activities including antiglycation and α-glucosidase inhibition were also performed where the antiglycation activity was performed using two techniques including spectrofluorometric as well as spectrophotometric technique. Spectrofluorometric technique provided 97% antiglycation potential while 92% antiglycation potential was observed by spectrophotometric technique for the isolated compound. The compound at a concentration of 10 μ gmL-1 exhibited 31% α-glucosidase inhibitory potential with IC50 of 15.56 μ gmL-1. Antimicrobial activity data showed that the compound was active against all the studied pathogenic bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号