首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   5篇
  国内免费   67篇
化学   96篇
物理学   10篇
  2023年   1篇
  2022年   5篇
  2021年   2篇
  2020年   1篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   5篇
  2012年   9篇
  2011年   12篇
  2010年   6篇
  2009年   9篇
  2008年   8篇
  2007年   5篇
  2006年   5篇
  2005年   9篇
  2004年   4篇
  2003年   6篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
1.
单壁碳纳米管用做超级电容器的电极材料   总被引:1,自引:0,他引:1  
摘要本文研究了采用电弧放电法大规模合成的单壁碳纳米管(SWNT)用作超级电容器电极材料的电化学性能。N2吸脱附测试表明SWNT既有发达的微孔,又有发达的中孔,其比表面为435 m2.g-1。由于既有双电层电容,又有表面官能团产生的准电容,采用浓硝酸处理后的单壁碳纳米管在水相电解液中的比电容达到105 F/g。基于SWNT的超级电容器也有着良好的充放电可逆性和循环稳定性。  相似文献   
2.
酚醛基活性炭纤维孔结构及其电化学性能研究   总被引:8,自引:0,他引:8  
利用水蒸汽活化法制备了酚醛基活性炭纤维(ACF-H2O), 对其比表面积、孔结构与在LiClO4/PC(聚碳酸丙烯酯)有机电解液中的电容性能之间的关系进行了探讨. 用N2(77 K)吸附法测定活性炭纤维的孔结构和比表面积, 用恒流充放电法和交流阻抗技术测量双电层电容器(EDLC)的电容量及内部阻抗. 研究表明, 在LiClO4/PC有机电解液中, ACF-H2O电极的可用孔径(d)应在0.7 nm以上. 随着活化时间的延长, ACF-H2O的孔容和比表面不断增大, 但微孔(0.7 nm < d < 2.0 nm)和中孔(d > 2.0 nm)率变化很小, 活化过程中孔的延伸和拓宽同步进行, 但过度活化则造成孔壁塌陷, 孔容和比表面迅速下降. 因此, 除活化过度的样品外, 电容量随比表面积呈线性增长, 最高达到109. 6 F•g-1. 但中孔和微孔的孔表面对电容的贡献不同, 其单位面积电容分别为8.44 μF•cm-2和4.29 μF•cm-2, 中孔具有更高的表面利用率. ACF-H2O电极的电容量、阻抗特性和孔结构密切相关. 随着孔径的增大, 时间常数减小, 电解液离子更易于向孔内快速迁移, 阻抗降低, 电极具有更好的充放电倍率特性. 因此, 提高孔径和比表面积, 减少超微孔(d < 0.7 nm), 是提高 EDLC能量密度和功率密度的重要途径. 然而仅采用水蒸汽活化, 只能在小中孔以下的孔径范围内进行调孔, ACF-H2O电极电容性能的提高受限.  相似文献   
3.
朱振威  邱景义  王莉  曹高萍  何向明  王京  张浩 《电化学》2022,28(12):2219003
锂离子电池已成为解决现代社会储能问题的最佳解决方案之一。然而,电池材料和器件开发都是复杂的多变量问题,传统的依赖研究人员进行实验的试错法在电池性能提升方面遇到了瓶颈。人工智能(AI)具有强大的高速、海量数据处理能力,是上述突破研究瓶颈的最具潜力的技术。其中,机器学习 (ML) 算法在评估多维数据变量和集合之间的组合关联方面的独特优势有望帮助研究人员发现不同因素之间的相互作用规律并阐明材料合成和设备制造的机制。本综述总结了锂离子电池传统研究方法遇到的各种挑战,并详细介绍了人工智能在电池材料研究、电池器件设计与制造、材料与器件表征、电池循环寿命与安全性评估等方面的应用。最重要的是,我们介绍了AI和ML在电池研究中面临的挑战,并讨论了它们应用的缺点和前景。我们相信,未来实验科学家、数学建模专家和AI专家之间更紧密的合作将极大地促进AI和ML方法用以解决传统方法难以克服的电池和材料问题。  相似文献   
4.
活性碳纳米管的制备及其在有机电解液中的电容性能研究   总被引:1,自引:0,他引:1  
徐斌  吴锋  苏岳锋  曹高萍  陈实  杨裕生 《化学学报》2007,65(21):2387-2392
以KOH为活化剂对碳纳米管进行化学活化制备双电层电容器用高比表面积活性碳纳米管. 采用TEM和N2吸附法表征活性碳纳米管的结构, 采用恒流充放电、循环伏安、交流阻抗等评价其在1 mol•L-1 Et4NBF4/PC中的电容性能. 随活化剂用量增大、活化温度升高和活化时间的延长, 活性碳纳米管的比表面积和比电容都呈增大的趋势. 活化剂用量为3∶1, 800 ℃活化4 h制备的活性碳纳米管的比表面积663 m2•g-1, 比活化前提高了3倍, 其比电容达57.2 F• g-1, 比活化前提高了2倍. 将活性碳纳米管的比电容与其比表面积相关联, 发现两者之间具有非常好的线性关系, 并分析了原因.  相似文献   
5.
采用热化学气相沉积(TCVD)法裂解酞菁铁(FePc)和乙烯(C2H4)制备出高210 μm的取向碳纳米管阵列(ACNTA). 用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉曼光谱和X射线光电子能谱(XPS)对制备的样品进行了表征, 系统研究了反应温度、反应时间、C2H4流量对ACNTA生长的影响. 结果表明, 样品具有高取向性且纯度高. 800 ℃是裂解FePc和C2H4制备ACNTA的最优温度, 催化剂的活性可以保持较长时间(60 min), 通入C2H4促进了ACNTA的快速生长, 最适合流量为50 cm3/min.  相似文献   
6.
二(三氟甲基磺酸酰)亚胺锂(LiTFSI)与1,3-氮氧杂环戊-2-酮(OZO)形成的离子液体具有良好的物理和电化学性能,表现出宽的液相温度范围和高的离子电导率,可满足超级电容器的应用需求。本文制备的LiTFSI-OZO离子液体体系中,各种离子的结构组成(如自由离子、离子对、积聚离子)及其之间的相互作用对离子液体的电化学性能具有较大的影响,将其作为电解液应用于不同微结构特性(孔径、比表面积等)的炭材料(碳纳米管(CNTs)、中孔活性炭(MEACs)和微孔活性炭(MIACs))作为电极的电化学双层电容器中,电化学兼容性研究表明,由于中孔活性炭电极材料有最大的比表面积及最适宜的孔径分布,相应的模拟电容具有最高的比容量184.6 F?g-1。该研究表明,对电极材料的微结构特性与离子液体离子尺度进行优化匹配是实现离子液体作为电解液应用于超级电容器的关键。  相似文献   
7.
报道了一种HBF4水溶液中的全铅液流电池,正、负电极电解液均采用Pb(BF42的HBF4水溶液.在酸性的四氟硼酸铅电解液中考察了石墨电极和玻碳电极作为工作电极的循环伏安性能,石墨电极较适于用作全铅液流电池的正、负电极.采用石墨电极作为电池的正、负电极并在四氟硼酸铅酸性电解液中进行充放电实验,其中Pb(BF42浓度分别为0.5、1.0和1.5 mol·L-1,且保持游离的HBF4浓度为1.0 mol·L-1.该电池为单液流电池,不需要隔膜分隔正、负极的电解液,电流密度为10、20和40 mA.cm-2,当限定充电容量为7.0 mAh.cm-2,放电电压截止到1.0 V时,平均库仑效率大于87%,平均能量效率大于68%;当电解液采用1.0或1.5 mol·L-1 Pb(BF42+1.0 mol·L-1HBF4水溶液时,在10及20 mA.cm-2电流下的能量效率最高可超过74%.  相似文献   
8.
通过电化学测试、 扫描电子显微镜观察和X射线衍射分析研究了电解液流速、 电流密度和锌沉积面容量三者关系及对锌镍单液流电池充放电性能和负极锌沉积形貌的影响. 结果表明, 锌沉积面容量是影响锌镍单液流电池充放电效率和负极锌沉积形貌的最主要因素, 电解液流速不宜过高或过低. 随着锌沉积面容量的增大, 电池的充放电效率和循环稳定性对电流密度的变化更为敏感, 适宜的电解液流速范围变窄. 锌沉积面容量在25 mA·h/cm2以上, 锌沉积皆呈海绵状. 在较低锌沉积面容量下, 电解液流速也较低时, 海绵锌沉积较为均匀致密. 而在高的锌沉积面容量下, 海绵状锌沉积的团簇和颗粒变大, 不均匀性加重, 仅在适中的电解液流速(7.1 L/min)下, 锌沉积部分致密规整, 电池具有较好的充放电性能.  相似文献   
9.
论文采用二维热模型分析了圆柱型Ni/MH电池在过充电过程中的热效应.实验提供了更为精准的数据以建立精确的热模型.利用石英频率微量热仪对电池的热容量以及电池在不同电流过充电时的发热量和散热速率进行了测量,继而将散热速率曲线拟合成线性函数和三段不同的指数函数.线性阶段之后的散热过程符合数学微分表达式,这些表达式有助于理解过渡阶段和过充电阶段散热速率的变化规律.热传导方程中产热速率采用理论计算值.最后使用FEM模拟了电池在1C,3C,5C充电过程每一阶段末时刻的电池内部温度场分布,结果相对准确.  相似文献   
10.
使用草酸盐共沉淀法合成了LiNi0.5Mn0.5O2, 并研究了共沉淀时的pH条件对终产物的结构、形貌及电化学性能的影响. 采用X射线衍射(XRD)和扫描电镜(SEM)表征了在pH值为4.0、5.5、7.0和8.5时得到的共沉淀和终产物LiNi0.5Mn0.5O2的结构和形貌. 使用充放电实验研究了不同pH条件下得到的LiNi0.5Mn0.5O2的电化学性能. 结果表明, pH为7.0时, 合成的材料颗粒更小、分布最均匀, 材料具有良好的层状特征, 且材料中锂镍的混排程度最小. 电化学测试结果印证了pH为7.0时合成的材料具有更好的电化学性能, 在0.1C的倍率下, 材料的首次放电比容量达到了185 mAh·g-1, 在循环20周后, 放电比容量仍然保持在160 mAh·g-1. X射线光电子能谱(XPS)测试结果表明, pH为7.0时合成的LiNi0.5Mn0.5O2中Ni为+2价, Mn为+4价.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号