首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
  国内免费   1篇
化学   2篇
晶体学   2篇
  2021年   1篇
  2020年   1篇
  2015年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
实验首先以γ-AlOOH粉体为原料,KCl-Na2SO4复合盐为熔剂,采用助熔剂法合成了α-Al2O3片晶,通过对合成片晶成型烧成,制备具有片状晶体支撑的氧化铝多孔陶瓷材料.并对α-Al2O3片晶形成过程,多孔陶瓷显气孔率、抗折强度、微观结构以及孔径分布进行了研究.研究结果表明,在KCl与Na2SO4复合盐存在情况下,可在900℃条件下合成分散性好,颗粒大小均匀的六方形α-Al2O3片晶,片晶的直径大约在10μm,厚度为0.3~0.5 μm.合成的α-Al2O3片晶具有非常好的烧结活性,在无添加烧结助剂的情况下,1600℃保温2h得到了显气孔率为41.74;,抗折强度为115.34MPa,孔径分布范围窄的氧化铝多孔陶瓷.窄的孔径分布以及优异的机械性能使其成为一种很有前途的膜支撑体和精确过滤材料.  相似文献   
2.
采用热重(TG-DTA)、定压比热(Cp)和原位高温红外反射光谱等热分析手段研究了四方相KDP晶体室温至260℃之间的高温热行为.实验发现:KDP晶体在183℃附近并未发生四方相到单斜相的相变或发生脱水反应;且晶体于207 ~ 210℃左右开始分解,随温度上升,分解过程分为三个阶段.第一个分解阶段出现P2O72-基团的吸收峰,意味着第一阶段的分解朝着K4P2O7的方向进行;第二阶段是第一阶段产生的中间态产物继续分解的过程;第三个分解阶段为前两个过程的继续分解,最终KDP完全分解为KPO3.通过Kissinger法,根据热重数据计算了KDP在260℃前两个明显的分解过程的动力学参数,其热脱水活化能分别为101.7 J·mol-1和112.4 J·mol-1.  相似文献   
3.
Hg2+污染对人类健康和生态环境构成重大威胁,但目前仍缺乏直接、灵敏的Hg2+检测技术.本研究通过碱性氧化法和水热法制备了Cu/CuO/ZnO丝,采用电化学聚合的方法将聚吡咯(PPy)覆盖到材料表面.利用p-n结势垒驱动电化学信号响应的原理将材料用于Hg2+的直接电化学检测,进行了微分脉冲伏安法测试.复合材料在200~...  相似文献   
4.
化石燃料的快速消耗导致了严重的环境问题,特别是全球变暖和雾霾.寻找替代传统化石能源的清洁能源是当务之急.光催化水分解技术被认为是将太阳能转化为绿色可再生能源的一种很有前景的方法.作为一种用于光催化的半导体材料,需要满足三个条件:(1)带隙要高于水分解的电压(1.23 e V);(2)带边缘位置应跨越氢还原电位和氧氧化电位;(3)在光催化过程中,光催化材料应具有抗光腐蚀的稳定性.然而,水氧化的半反应是非常困难的,主要是涉及到复杂的四电子氧化过程和O-O键形成的高激活能量.TiO2是光催化剂中最重要的材料之一,因为它具有成本低,无毒,光稳定性好等优点。但TiO2的可见光利用率低,载流子复合率高,光催化效率受到严重限制.通过H2还原可以引入Ti3+,还原得到的TiO2带隙变窄,具有较好的可见光催化产氧活性.由于贵金属纳米粒子具有表面等离子体共振(SPR)效应,将贵金属(如金或者银)与TiO2结合是将光催化剂的光吸收边扩展到更长的波长一种有效途径.然而,贵金属的价格限制了它们的商业化,因此需要低成本的金属作为替代品.最近,金属铋(Bi)被证明是贵金属的理想替代品,具有明显的SPR效应,在可见光甚至近红外范围具有优异的光吸收性能.通过光还原,化学还原,水热还原等还原方法,可以方便地获得金属Bi.然而,通过原位沉积的方法将金属Bi纳米粒子直接沉积到半导体表面仍然是一个很大的挑战.本文采用双金属有机骨架衍生的合成策略,通过调节合成温度,将金属Bi原位沉积到还原TiO2微球表面(Bi@R-TiO2).采用X射线衍射,扫描电镜,透射电镜, X射线光电子能谱,漫反射光谱,光致发光光谱,阻抗,光电流响应等表征技术对制备样品的结构和光学性能进行了研究.结果表明,通过乙二醇可以将Ti4+还原为Ti3+得到还原的TiOx, Bi3+同时也被还原为金属Bi.当退火温度控制在300 oC时,相应的Bi@R-TiO2-300表现出最高的全光谱光催化产氧活性(4728.709μmolh–1g–1),分别是的纯TiO2和Bi-Ti双金属有机框架的5.9和9.5倍.这可归因于以下三点:(1)金属Bi作为"电子受体",加速了TiO2向Bi的载流子转移;(2)负载到还原TiO2表面的金属Bi具有SPR效应可以增强可见光和近红外光的吸收能力;(3) Ti3+的产生进一步减小TiO2的禁带宽度.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号