首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21675篇
  免费   2987篇
  国内免费   3469篇
化学   12154篇
晶体学   183篇
力学   1696篇
综合类   1437篇
数学   5267篇
物理学   7394篇
  2024年   62篇
  2023年   645篇
  2022年   825篇
  2021年   806篇
  2020年   816篇
  2019年   602篇
  2018年   664篇
  2017年   848篇
  2016年   872篇
  2015年   991篇
  2014年   1434篇
  2013年   1821篇
  2012年   1943篇
  2011年   1832篇
  2010年   1555篇
  2009年   1668篇
  2008年   1374篇
  2007年   1526篇
  2006年   1455篇
  2005年   959篇
  2004年   676篇
  2003年   527篇
  2002年   483篇
  2001年   488篇
  2000年   385篇
  1999年   406篇
  1998年   270篇
  1997年   179篇
  1996年   130篇
  1995年   122篇
  1994年   109篇
  1993年   117篇
  1992年   101篇
  1991年   87篇
  1990年   91篇
  1989年   75篇
  1988年   251篇
  1987年   365篇
  1986年   383篇
  1985年   68篇
  1984年   32篇
  1983年   16篇
  1982年   17篇
  1981年   10篇
  1980年   4篇
  1979年   7篇
  1976年   2篇
  1971年   1篇
  1959年   26篇
  1957年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Refractory wounds have always been an important issue to healthcare systems, whose healing process is always delayed by multiple factors, including bacterial infections, chronic inflammation, and excessive exudates, etc. Employing multifunctional wound dressings is recognized as an effective strategy to deal with refractory wounds, which has yielded promising outcomes in recent years. Among these advanced wound dressings, fibrous dressings have gained growing attention due to their unique merits. Such wound dressings have demonstrated great potential in delivering theranostic agents, such as antibacterial agents, anti-inflammatory drugs, growth factors, and diagnostic probes, etc., for the purposes of accelerating wound healing. This paper reviews the development of multifunctional fibrous dressings and their applications in treating refractory wounds. The construction approaches of novel fibrous dressing with capabilities of antibacterial, anti-inflammation, exudate management and diagnosis were also introduced. Furthermore, the existing problems and challenges are also discussed briefly.  相似文献   
2.
3.
Considering the random impulses of mechanical noise and the limitations involved while identifying mechanical fault impulse signals via traditional measurement indices of signal-to-noise ratio, which require the characteristic frequency to be known in advance, this study proposes an adaptive unsaturated stochastic resonance method employing maximum cross-correlated kurtosis as the signal detection index. The proposed method combines the features of a cross-correlated coefficient to indicate periodic fault transients and those of spectrum kurtosis to locate these transients in the frequency domain. Actual vibration signals collected from motor and gear bearings subjected to heavy noise are used to demonstrate the effectiveness of the proposed method. Through a coarse tree-based machine learning method, the proposed method is verified to be more suitable for explaining the periodic impulse components of bearing signals, as compared to the ensemble empirical mode decomposition denoising method and unsaturated stochastic resonance using the kurtosis-intercorrelation index.  相似文献   
4.
Facile construction of sulfur-rich polymers using readily available raw chemicals is an area aggressively pursued but challenging. Herein we use common feedstocks of ethylene oxide (EO), propylene oxide (PO), and carbonyl sulfide (COS) to synthesize copoly(thioether)s which are traditionally produced from unpleasant and difficult to store episulfides. In this protocol, the EO/COS coupling selectively generates a pure poly(ethylene sulfide) (PES) with melting temperature (Tm) values up to 172°C and high yields up to 98%. The EO/PO/COS terpolymerization leads to the incorporation of soft poly(propylene sulfide) (PPS) and hard PES segments together, affording a random PES-co-PPS copoly(thioether) with the complete consumption of EO and PO. Additionally, by simply varying the EO/PO feeding ratio, the obtained copoly(thioether)s possess tunable thermal properties, Tm values in the range of 76–144°C, and excellent solubility. These copolymerizations are conducted in one-pot/one-step at industrially favored reaction temperatures of 100–120°C using catalysts of common organic bases, suggesting a facile and practical manner. Especially, the copoly(thioether) exhibits high refractive indices up to 1.68 owing to its high sulfur content, suggesting a broad application prospect in optical materials.  相似文献   
5.
Gradient coil (GC) vibration is the root cause of many problems in MRI adversely affecting scanner performance, image quality, and acoustic noise levels. A critical issue is that GC vibration will be significantly increased close to any GC mechanical resonances. It is well known that altering the dimensions of a GC fundamentally affects the mechanical resonances excited by the GC windings. The precise nature of the effects (i.e., how the resonances are affected) is however not well understood. The purpose of the present paper is to study how the mechanical resonances excited by closed whole-body Z-gradient coils are affected by variations in cylinder geometry. A mathematical Z-gradient coil vibration model recently developed and validated by the authors is used to theoretically study the resonance dynamics under variation(s) in cylinder: (i) length, (ii) mean radius, and (iii) radial thickness. The forced-vibration response to Lorentz-force excitation is in each case analyzed in terms of the frequency response of the GC cylinder's displacement. In cases (i) and (ii), the qualitative dynamics are simple: reducing the cylinder length and/or mean radius causes all mechanical resonances to shift to higher frequencies. In case (iii), the qualitative dynamics are much more complicated with different resonances shifting in different directions and additional dependencies on the cylinder length. The more detailed dynamics are intricate owing to the fact that resonances shift at comparatively different rates and this leads to several novel and theoretically interesting predicted effects. Knowledge of these effects advance our understanding of the basic mechanics of GC vibration and offer practically useful insights into how such vibration may be passively reduced.  相似文献   
6.
A numerical model was developed and validated to investigate the fluid–structure interactions between fully developed pipe flow and core–shell-structured microcapsule in a microchannel. Different flow rates and microcapsule shell thicknesses were considered. A sixth-order rotational symmetric distribution of von Mises stress over the microcapsule shell can be observed on the microcapsule with a thinner shell configuration, especially at higher flow rate conditions. It is also observed that when being carried along in a fully developed pipe flow, the microcapsule with a thinner shell tends to accumulate stress at a higher rate compared to that with a thicker shell. In general, for the same microcapsule configuration, higher flow velocity would induce a higher stress level over the microcapsule shell. The deformation gradient was used to capture the microcapsule's deformation in the present study. The effect of Young's modulus on the microcapsule shell on the microcapsule deformation was investigated as well. Our findings will shed light on the understanding of the stability of core–shell-structured microcapsule when subjected to flow-induced shear stress in a microfluidic system, enabling a more exquisite control over the breakup dynamics of drug-loaded microcapsule for biomedical applications.  相似文献   
7.
8.
Annals of the Institute of Statistical Mathematics - In this paper, a model averaging approach is developed for the linear regression models with response missing at random. It is shown that the...  相似文献   
9.
Jin  Zhuochen  Cao  Nan  Shi  Yang  Wu  Wenchao  Wu  Yingcai 《显形杂志》2021,24(2):349-364
Journal of Visualization - The increasing availability of spatiotemporal data provides unprecedented opportunities for understanding the structure of an urban area in terms of people’s...  相似文献   
10.
The accumulation of material degradation under contact with aggressive aqueous environments could lead to reduced structural reliability. In terms of hydrated cementitious materials, such interactions often result in the chemo-physical-mechanical (CPM) degradation, which represents a multiphysics process of high non-linearity and complexity. By further considering the inevitable uncertainties associated with both the materials and the serving conditions, solving such a process requires novel probabilistic approaches. This paper presents a stochastic chemo-physical-mechanical (SCPM) degradation analysis on the hydrated cement under acidic environment. The SCPM analysis consists of modelling the stochastic chemophysical degradation by finite element method, and assessing the mechanical deterioration through analytical micromechanics. The proposed modelling framework couples the conventional Monte Carlo Simulation with a novel support vector regression algorithm. The present method is able to not only address the detailed degradation mechanisms, but also ensure low computational costs for an accurate SCPM degradation assessment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号