排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
2.
3.
水-岩作用对岩石抗压强度效应及形貌指标的实验研究 总被引:1,自引:0,他引:1
通过测定金川岩样的含水率以及水对岩石抗压强度,采用精度高达0.5μm的Talysurf CLI2000三维表面激光形貌仪,对经过矿井深部地下水作用前后的四种不同岩性的岩石试件进行形貌扫描,结合八个形貌参数作出定量分析对比。实验表明:矿岩遇水软化,岩石抗压强度降低,破坏时不属于脆性破坏,其原因可能就在于由于其中的粘土矿物吸水,当受力压缩时,水受压排出产生压密现象。水-岩作用后岩石表面形貌高度的离散性、粗糙程度变大,高度的分布概率更为集中,由负偏态变为正偏态且高度分布的对称性好于作用前。峰点算术平均曲度Ssc都有规律地降至0.62附近,更具协调性。 相似文献
4.
注水油田年综合含水率预测的数学模型 总被引:1,自引:0,他引:1
本文将改进的灰色GM(1,1)模型用于某油田年综合含水率的近期发展趋势研究。在平均相对误差达到最小准则下,研究了模型中的背景值参数A和边值修正项£对模型预测精度的影响。在此基础上,采用线性规划方法估计模型中的参数,基于遗传算法求解最佳背景值参数A和最佳边值修正项ε,以确保在相应的模型检验准则下预测的误差达到最小。结果表明,用改进的灰色GM(1,1)模型预测近期注水油田的综合含水率,预测值与实际值相对误差很小,预测精度很高,可以得到非常满意的结果。进一步的研究发现,改进的灰色GM(1,1)模型虽然近期预测精度很高,但研究长期的发展趋势是行不通的,为此又研究探讨了长期发展趋势模型。 相似文献
5.
6.
冻结法施工在上海隧道建设中(如隧道旁通道、地下泵房等的设计与施工)得到广泛应用,也曾引发过严重的地质灾害(如上海地铁4号线外滩段的地质灾害)。因此安全、经济、合理地将冻结法用于上海软土地区隧道建设中已经成为上海工程建设中的一个重要的研究课题。本文以上海复兴东路越江隧道旁通道冻结法施工中遇到的第⑥层粉质粘土及第⑦层粉细砂为研究对象,针对设计冻结壁重要强度参数无侧限瞬时抗压强度,进行了室内试验研究,揭示了两种土的冻结强度随温度的变化关系,同时研究了粉细砂的冻结强度随含水率的变化规律。 相似文献
7.
8.
9.
准确及时的检测原油含水率对注水策略调整、原油开采能力评估、油井开发寿命预测等均具有重要意义。然而,当前我国大多数油田均已进入高含水的开发中晚期,含水率测量难度大且准确率不高。在此背景下,开展了高含水情况下利用近红外光谱进行原油含水率测量的研究。 首先介绍了目前原油含水率检测的常用方法,分析了它们的优劣。理论上,由于水的近红外光吸收带与原油中C-H键的吸收带有明显区别,根据Lambert-Beer吸收定律和吸光度线性叠加定律可知,不同含水率高含水原油近红外光谱会存在较强响应差异。为此,对高含水原油进行近红外光谱检测,建立原油含水率与近红外光谱响应间的非线性映射模型,可实现高含水原油含水率的精确测量。为了验证该方法的有效性,搭建了近红外光谱数据采集实验装置:采用白炽灯作为光源,经过光路调节成平行光后垂直射入样品池,用近红外光谱仪(海洋光学NIR512)采集光谱用于分析。其中,接收光谱仪带宽为900~1 700 nm,平均分成512个波段。光谱数据利用光谱仪配套软件储存在电脑中。样本采用相同厚度不同比例的油水混合物,样本含水率范围为70%~99%,共采集数据60组,每组重复3次取平均值。得到原始数据后,先进行原始数据预处理,以减少数据采集时来自高频随机噪音及温度不稳定、样本不均匀、基线漂移、光散射等不利因素的影响。分别选用了S-G滤波、一阶导数和S-G滤波+一阶导数作为数据预处理的方法,利用连续投影算法(SPA)对光谱数据进行降维,并利用偏最小二乘法(PLS)和多元线性回归(MLR)进行建模,模型精度通过计算均方根误差值(RMSE)和相关系数(r)来验证。对比发现,使用S-G滤波+一阶导数建立的模型RMSE值最小(RMSE=0.007 0,r=0.998 3)。使用SPA降维后的模型要优于全波段PLS模型(RMSE=0.083 3,r=0.920 6)与MLR模型(RMSE=0.099 9,r=0.967 1)。利用SPA提取出的31个特征波长建立的模型仅占全波段的6.05%,并获得了较好的精度。证明了利用光谱检测高含水原油含水率可行性,并且得到了满意的精度,为高含水原油的含水率检测提供了新的方法, 为进一步利用近红外光进行高含水原油的快速检测与在线监测提供参考。 相似文献
10.
为了快速检测马铃薯叶片的水分含量,并探究受到干旱胁迫时叶片含水率变化情况,利用高光谱成像对马铃薯叶片含水率进行检测和可视化研究。采集71个叶片,用烘干法对叶片水分梯度进行控制,共得到355个样本。使用高光谱分选仪器采集叶片862.9~1 704.2 nm(256个波长)的光谱成像数据,采用称重法测量含水率。利用Sample set partitioning based on joint X-Y distance(SPXY)算法将总样本按照2∶1的比例划分为建模集(240个样本)和验证集(115个样本)。对采集的数据进行光谱特征分析,本文分别用CA和RF两种算法,各筛选得到15个特征波长。基于CA筛选出相关系数高于0.96的15个波长分别为1 406.82,1 410.12,1 403.62,1 413.32,1 416.62,1 419.82,1 400.32,1 423.12,1 426.32,1 429.62,1 432.82,1 436.12,1 439.32,1 442.52和1 445.8 nm。基于RF算法筛选被选概率高于0.3的15个特征波长,按照被选择概率值从大到小排列,分别为1 071.62,1 041.12,1 222.52,1 465.22,1 397.02,1 449.02,1 034.32,1 523.22,976.42,1 172.52,979.82,1 165.82,1 037.72,1 426.32和869.8 nm。用CA和RF算法筛选到的特征波长建立PLSR模型,分别记为CA-PLSR模型和RF-PLSR模型。利用高精度模型检测结果,对马铃薯叶片含水率进行可视化分析,首先计算马铃薯叶片图像每个像素点的含水率,得到灰度图像,然后对灰度图像进行伪彩色变换,绘制出叶片含水率可视化彩色图像。为了体现马铃薯叶片烘干处理中含水率变化进程,用HSV彩色模型对样本叶片的伪彩色图像进行分割,获得分割图像结果,显示出在某含水率区间的叶片面积比例。结果显示,CA算法选取的15个波长均在1 400.3~1 450.0 nm范围内,CA-PLSR模型的建模精度(R2c)为0.975 5、建模集均方根误差(RMSEC)为2.81%,验证集精度(R2v)为0.933 2、验证集均方根误差(RMSEV)为2.31%。RF算法选取的特征波长分布范围较CA法选取范围广,具有局部“峰谷”特性,且RF-PLSR模型的建模集精度(R2c)为0.983 2、RMSEC为2.32%,验证集精度(R2v)为0.947 1、RMSEV为2.15%。选取RF-PLS模型计算马铃薯每个像素点的含水率,得到伪彩色变换图像,观察可知随着烘干时间的增加含水率逐渐下降;并能够从叶片结构角度看到,随着水分胁迫的加强,叶片从边缘开始失水,逐渐向叶片中间蔓延,其中叶茎和叶脉的含水率较其他部位高。计算得到叶片伪彩色图像中含水率大于90%,80%和70%的像素点占整个叶片图像的比例。利用高光谱成像技术可以实现马铃薯叶片的含水率检测与分布可视化表达,为监测马铃薯生长状况以及叶片含水率分析提供新的理论根据。 相似文献