排序方式: 共有21条查询结果,搜索用时 12 毫秒
1.
2.
3.
运用高效液相色谱-电喷雾离子阱串联质谱(HPLC-ESI-MS/MS)技术,建立了快速、简单、灵敏的SD大鼠肺中N7-(2-羟乙基硫代乙基)鸟嘌呤(N7-HETEG)的检测方法。以N7-苯甲基鸟嘌呤为内标,用甲醇和水为流动相进行梯度洗脱,正离子模式检测,方法的检出限(信噪比(S/N)≥10)为300 pg/mL,定量限(S/N≥20)为850 pg/mL。在300 pg/mL~1.28 μg/mL的质量浓度范围内,N7-HETEG浓度与N7-HETEG和内标的峰面积比呈良好的线性关系(线性相关系数为0.9929)。高、中、低3个添加水平的日内测定精密度(以相对标准偏差(RSD)计)和日间测定精密度均小于10%(n=7),回收率为100%~132%。对SD大鼠背部皮肤染芥子气,剂量分别为5.5、11、22和45 mg/kg,染毒4 d后检测大鼠肺脏中N7-HETEG的含量。各个不同染毒剂量下,每克组织中分别检测到(0.56±0.16)、(0.67±0.12)、(1.36±0.68)和(5.14±0.92) ng N7-HETEG, N7-HETEG的含量随着染毒剂量的增大而增大,表明N7-HETEG可用作芥子气暴露的体内生物标志物。 相似文献
5.
增材制造是一种先进的金属制备方法,能够极大满足个性化的制造需求。制造过程中由于工艺原因可能会出现裂纹等典型缺陷。涡流无损检测对于增材制造结构件的裂纹缺陷是一种潜在的有效评价手段。在增材制造过程中,构件残余热会影响检测效果,需要开发抑制温度影响的涡流信号处理方法。基于以上背景,本研究开展了以下工作:(1)对涡流检测信号受温度影响的机理进行了详细分析,包括涡流检测信号温漂的影响因素以及这些因素随温度的变化规律。(2)基于数值计算验证了涡流检测信号的温漂规律。(3)搭建了涡流检测实验平台,通过该平台进行实验发现,待测导体温度越高缺陷信号越小。(4)针对自激自检探头信号温漂难题,设计了双探头差动补偿形式,开发了涡流信号间接差分信号处理方法。(5)使用上述差动补偿形式和信号处理方法,达到了减弱涡流信号漂移、提高涡流信号信噪比的目的。 相似文献
6.
液相色谱-串联质谱法同时测定血浆中白藜芦醇苷及其代谢产物 总被引:1,自引:0,他引:1
建立同时测定大鼠血浆中白藜芦醇苷及其代谢产物白藜芦醇的液相色谱-串联质谱方法。以Lichro-spher C18色谱柱为分析柱,乙腈-水为流动相,采用电喷雾离子源(ESI),以多反应监测(MRM)模式检测,内标法定量,用于定量分析的离子反应分别为m/z389/227(白藜芦醇苷)和m/z227/143(白藜芦醇)。血浆中的白藜芦醇苷及白藜芦醇用乙酸乙酯提取,N2吹干乙酸乙酯,残留物用甲醇溶解,注入LC/MS/MS系统进行检测。在选定的样品预处理、色谱及质谱条件下,白藜芦醇苷、白藜芦醇及内标物能够达到基线分离而且离子化效果好。用LC/MS/MS法检测大鼠血浆中的白藜芦醇苷及其代谢产物白藜芦醇,线性范围0.4~200μg/L,日内、日间精密度(RSD)均小于15%;检测血浆低、中、高3个浓度(1、20、100μg/L)白藜芦醇苷的回收率分别为106.2%、97.8%和91.6%;检测血浆低、中、高3个浓度(1、20、100μg/L)白藜芦醇的回收率分别为113.2%、103.6%和93.4%。本方法具有灵敏、准确、快速的特点,可用于白藜芦醇苷的药代动力学研究。 相似文献
7.
氮化碳聚合物(PCN)是一种有潜力的聚合物型半导体光催化剂,具有原料廉价、物理化学稳定性好以及合适的带边等优点,使其在光催化分解水产氢产氧、降解染料以及抑菌等方面具有很大的潜力.但是由于高电负性的N原子被低电负性的C原子均匀地取代,增加了PCN内部电子传输的难度,使得光生电子–空穴对的复合度增加,进而光催化活性降低.由于PCN的分子结构可调控,所以可以通过分子掺杂来改变氮化碳分子结构,提高光催化活性.常用的分子有机分子,比如吡啶类化合物、嘧啶类化合物以及噻吩类化合物.研究发现,强电负性元素的引入可以改变氮化碳的电子分布,所以含有两个N原子的咪唑类化合物理论上对氮化碳的光催化活性提升帮助更大.由于此类化合物还未见有报道.因此,本文将同时含有咪唑环和嘧啶环的可可碱与尿素反应,生成了咪唑环与嘧啶环共掺杂的氮化碳聚合物,并通过一系列的表征方法验证了咪唑环与嘧啶环成功引入到氮化碳聚合物结构中;然后利用紫外可见光谱(UV-vis),荧光发射光谱(PL),电子顺磁共振(EPR)等实验与DFT理论计算共同验证了咪唑环与嘧啶环共掺杂的氮化碳光学性能;最后通过光催化分解水产氧和降解罗丹明B(RhB)来评价改性后氮化碳的活性.UV-vis测试结果表明,改性后的PCN不仅本征吸收发生红移,而且在波长450到550 nm之间有一个明显的吸收峰,这是由于引入咪唑环和嘧啶环后本征n→π~*电子跃迁所致.并且改性后的PCN的禁带宽度相比于未改性有所降低,说明其可利用的可见光范围增加.PL和EPR结果表明,改性后的PCN不仅光生载流子的复合得到了极大地抑制,而且能够产生更多的孤对电子.通过XPS价带谱,莫特–肖特基曲线以及DFT理论计算推断出改性前后PCN的带边位置,发现改性后PCN的价带位置更正,说明其产生的空穴氧化能力更强.光催化分解水产氧和降解RhB发现,最优改性样品CN40的产氧和降解RhB活性分别是未改性氮化碳的4.43倍和5.1倍.这说明通过咪唑环和嘧啶环共掺杂改性后的氮化碳的光催化活性确实得到了大幅度提升.最后通过添加各种牺牲剂和ESR/DMPO表明·O_2~-和空穴是降解RhB的主要因素.综上所述,通过咪唑环和嘧啶环共掺杂改性氮化碳聚合物,不仅提高了其光吸收能力,抑制了光生载流子的复合,产生更多的孤对电子,而且使得价带位置正移,提高了价带空穴的氧化能力,光催化活性显著提高. 相似文献
8.
10.