首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24886篇
  免费   2429篇
  国内免费   2441篇
化学   19540篇
晶体学   420篇
力学   937篇
综合类   180篇
数学   576篇
物理学   8103篇
  2025年   23篇
  2024年   364篇
  2023年   352篇
  2022年   820篇
  2021年   1100篇
  2020年   1476篇
  2019年   1205篇
  2018年   815篇
  2017年   828篇
  2016年   953篇
  2015年   885篇
  2014年   1024篇
  2013年   2123篇
  2012年   1352篇
  2011年   1272篇
  2010年   971篇
  2009年   1204篇
  2008年   1232篇
  2007年   1194篇
  2006年   1203篇
  2005年   1086篇
  2004年   1067篇
  2003年   956篇
  2002年   906篇
  2001年   628篇
  2000年   677篇
  1999年   531篇
  1998年   458篇
  1997年   410篇
  1996年   400篇
  1995年   330篇
  1994年   325篇
  1993年   283篇
  1992年   253篇
  1991年   172篇
  1990年   141篇
  1989年   110篇
  1988年   100篇
  1987年   78篇
  1986年   67篇
  1985年   66篇
  1984年   65篇
  1983年   20篇
  1982年   40篇
  1981年   34篇
  1980年   27篇
  1979年   25篇
  1978年   17篇
  1976年   16篇
  1973年   28篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
The polyaddition of fluorine‐containing bis(epoxide)s and fluorine‐containing triazine di(aryl ether)s were examined to give the corresponding fluorine‐containing poly(cyanurate)s. It was observed that the synthesized fluoropolymers had good thermal stabilities and good film‐forming properties. The glass transition temperatures (Tg's) and refractive‐indices (nD's) of synthesized polymers were determined by differential scanning calorimetry and ellipsometry, respectively, and it was found that the values of Tg's and nD's were supported by their fluorine containing ratios and skeletons. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4421–4429, 2007  相似文献   
2.
Unique crystallization and melting behavior in poly(aryl ether ketone ketone) containing alternated terephthalic and isophthalic moieties were studied by time-resolved synchrotron x-ray methods. Recently, this material has been shown to exhibit three polymorphs (forms I, II, and III). In this work, we further investigated their distinctive thermal properties and found that form I is the dominating and the most thermally stable phase while form II is favored by fast nucleation conditions and is the least stable phase. On the other hand, form III represents a minor intermediate phase that usually coexists with form I and can be transferred from form II and to form I. Structural and morphological changes in form I have been followed by simultaneous wide-angle x-ray diffraction (WAXD)/small-angle x-ray scattering (SAXS) measurements during cold- or melt-crystallization and subsequent melting. In all cases, a larger dimensional change was found in the crystallographic a-axis than the b-axis during heating and cooling. This may be due to the greater lateral stress variation with respect to temperature along the a direction of the primary lamellae which is induced by either the formation of secondary lamellae or the preferential chain-folding direction in poly(aryl ether ketone ketone)s. During the phase transitions of form II ← III in the cold-crystallized specimen and form III ← I in the melt-crystallized samples, lamellar variables (long period, lamellar thickness, and invariant) obtained from SAXS remain almost constant. This indicates that the density distribution in the long spacing is independent of the melting in form II or III. For melt-crystallization, the corresponding changes in unit-cell dimensions and lamellar morphology during the annealing-induced low endotherm are most consistent with the argument that these changes are due to the melting of thin lamellar population. © 1995 John Wiley & Sons, Inc.  相似文献   
3.
This is meant to be a brief overview of the developments of research activities in Japan on organometallic compounds related to their use in electronic and optoelectronic devices. The importance of organometallic compounds in the deposition of metal and semiconductor films for the fabrication of many electronic and opto-electronic devices cannot be exaggerated. Their scope has now extended to thin-film electronic ceramics and high-temperature oxide superconductors. A variety of organometallic compounds have been used as source materials in many types of processing procedures, such as metal–organic chemical vapor deposition (MOCVD), metalorganic vapor-phase epitaxy (MOVPE), metal–organic molecular-beam epitaxy (MOMBE), etc. Deposited materials include silicon, Group III–V and II–VI compound semiconductors, metals, superconducting oxides and other inorganic materials. Organometallic compounds are utilized as such in many electronic and optoelectronic devices; examples are conducting and semiconducting materials, photovoltaic, photochromic, electrochromic and nonlinear optical materials. This review consists of two parts: (I) research related to the fabrication of semiconductor, metal and inorganic materials; and (II) research related to the direct use of organometallic materials and basic fundamental research.  相似文献   
4.
For low-temperature deposition of oxide films relating to Bi-Sr-Ca-Cu-O superconductors, photo-absorption and -decomposition properties were examined with respect to copper and alkaline-earth ß-diketonates. It was confirmed that all ß-diketonates examined were promising as source materials for photochemical vapour deposition (photo-CVD) using a low-pressure mercury lamp, in view of their large light absorption coefficients at wavelength 254 nm. The light irradiation was effective for the formation of highly crystalline oxide films at temperatures below 600 °C. By combining two sources, Ca2CuO3 and SrCuO2 films were prepared. Photo-CVD of c-axis oriented Bi2Sr2CuOx film was achieved by the irradiation of ternary sources of Bi(C6H5)3 and strontium and copper ß-diketonates at 500 °C.  相似文献   
5.
Lactide polymerization using zirconium(IV) acetylacetonate [Zr(acac)4] as an initiator was investigated. In the reaction between Zr(acac)4 and the monomer molecule, lactide deprotonation and the release of acetylacetone occurred. The structures of the obtained complexes were analyzed with high‐resolution NMR spectroscopy. A computational method was used to calculate the hypothetical structures. The role of the obtained complexes in the initiation of polymerization and the reaction of chain growth was proposed. The influence of the reaction temperature on the structures of the complexes was investigated. Polylactide chain growth proceeded by an insertion‐coordination mechanism. The polymer chain grew on one ligand, which was formed in advance from a deprotonated lactide. The molecular masses of the obtained polymers were the same as the theoretical masses and were directly proportional to the reaction conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1886–1900, 2004  相似文献   
6.
Metal ion uptake properties of polystyrene-supported chelating polymer resins functionalized with (i) glycine, (ii) hydroxy benzoic acid, (iii) Schiff base and (iv) diethanol amine have been investigated. The effects of pH, time and initial concentration on the uptake of metal ions have been studied. The uptake of metal ion depends on pH. The resins are more selective at pH 10 for Pb(II) and Hg(II), whereas at pH 6 they are found to be Cd(II) and Cr(VI) selective. Metal ion uptake properties of resins follow Freundlich’s equation. The resins are recyclable and are therefore employed for the removal of heavy metal pollutants from industrial waste water.  相似文献   
7.
Dithiocarbamate functions were incorporated into different polyacrylamide matrices crosslinked with a flexible and hydrophilic crosslinking agent, tetraethyleneglycol diacrylate (TEGDA), and their complexation behaviours were investigated. Crosslinked polyacrylamides with varying extents of the tetrafunctional TEGDA crosslinks were prepared by free radical solution polymerization at 60°C using potassium persulphate as initiator in ethanol. The dithiocarbamate functionality was incorporated into these polyacrylamides by a two-step polymer-analogous reaction involving (i)trans-amidation with ethylenediamine and (ii) dithiocarbamylation of the aminopolyacrylamide with carbon disulphide and alkali. The complexations of dithiocarbamate with Cu(II), Ni(II), Zn(II), Co(II) and Hg(II) ions were followed under different conditions. The metal ion intake varied with the extent of the crosslinking agent and the observed trend in complexation is Hg(II) > Cu(II)> Zn(II)> Co(II)> Ni (II). The time-course of complexation, the possibility of recycling, swelling characteristics, and spectral and thermal analyses were carried out. The thermal stability increases upon complexation with metal ions.  相似文献   
8.
The high sensitivity of the thermally stimulated current, thermal sampling (TS) method is emphasized in a study of the breadth of the glass transition in several liquid-crystalline polymers (LCPs). Differential scanning calorimetry (DSC) was performed on all samples to further quantify the glass transition regions. For “random” copolyester LCPs with widely varying degrees of crystallinity, including highly amorphous samples, very broad glass tran-sition regions were observed. One semicrystalline alternating copolyester and a series of semicrystalline azomethine LCPs were studied as examples of structurally regular polymers. These exhibited relatively sharp glass transitions more comparable to ordinary isotropic amorphous or semicrystalline polymers. The broad glass transitions in the random copolyesters are attributed to structural heterogeneity of the chains. In one example of a moderate-crystallinity random copolyester LCP (Vectra), glass transitions ranging up to ca. 150°C in breadth were determined by the thermal sampling (TS) method and DSC. In other lower crystallinity copolyester LCPs, the main glass transition temperature as determined by DSC was comparable to that determined by TSC although cooperative relaxations of a minor fraction of the overall relaxing species were detected well below the main Tg, by the TS method and not by DSC. Rapid quenches from the isotropic melt to an isotropic glass were possible with one LCP. The anisotropic and isotropic glassy states for this LCP were found to have the same breadth of the glass transition as was determined by the TS method, although TSC and DSC show that Tg is shifted downward by ca. 15°C in the anisotropic glass as compared to the isotropic glass. © 1993 John Wiley & Sons, Inc.  相似文献   
9.
The complex Young's modulus, E*(ω), and the complex strain-optical coefficient, O*(ω), which is the ratio of the birefringence to the strain, were measured for polyisoprene (PIP) over a frequency range of 1 ~ 130 Hz and a temperature range of 22 ~ ?100°C. The imaginary part of O*, O″, was positive at low frequencies and negative at high frequencies. The real part, O′, was always positive and showed a maximum. The complicated behavior of O* could be understood by the assumption that E* = ER* + EG* and O* = CRER* + CGEG*, where ER* and EG* were complex quantities and CR and CG were constants. The CR value, equal to the ordinary stress-optical coefficient measured in the rubbery plateau zone, was 2.0 × 10?9 Pa?1. The CG value, defined as the ratio O″/E″ in the glassy zone, was ?1.1 × 10?11 Pa?1. The EG*, which was the major component of E* in the glassy zone, showed almost the same frequency dependence as that of polystyrene and polycarbonate. The ER*, which was dominant in the rubbery zone, was described well by the bead-spring theory. The temperature dependence of the EG* was stronger than that of the ER*. This difference caused the breakdown of the thermorheological simplicity for E* and O* around the glass-to-rubber transition zone. © 1995 John Wiley & Sons, Inc.  相似文献   
10.
Urea can be sorbed by coordination (or complexation)with transitional metalpolyacrylic acid complex and transitional metal-polyacrylamide containing polyethylenepolyamine ligand complexes. The experimental results indicate that the sorbents can sorb about 60mg urea per gram of sorbent at 37℃ and the concentration of urea was 1300.0rag/1 in NaH_2PO_4 and Na_2HPO_4 buffer solution (pH=7.0) and the urea sorption capacity was affected by many factors such as other competive ligands, sorption time, pH and the concentration of urea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号