排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
通过Adams方法成功制备MnO2-0.39IrOx(0.39为Ir/Mn的原子比)催化剂并将其用于酸性介质中高效析氧反应(OER)。电化学测试发现,MnO2-0.39IrOx仅需253 mV的过电势即可驱动10 mA·cm-2的水氧化电流密度,并可稳定运行200 h。在1.50 V(vs RHE)电势下,MnO2-0.39IrOx的贵金属Ir的质量活性为61.3 mA·mg-1,是IrO2的35.8倍,说明MnO2掺杂大大提升了贵金属利用率。结构分析发现MnO2-0.39IrOx独特的片状结构大幅度提高了催化剂的电化学活性表面积,并且Ir位点与Mn位点之间存在一定的电子相互作用。催化过程分析表明,MnO2-0.39IrOx表面出现一定的重构现象,并且Mn组分对Ir位点的化学环境实现了持续优化,从而实现了催化剂的高效酸性OER性能。 相似文献
2.
通过简便的两步电沉积法在泡沫镍表面有效复合非晶态Ni3S2材料与富缺陷的NiFe双金属羟基氧化物,从而构建了NiFe/Ni3S2/NF三维分级纳米异质电极。受益于非晶态Ni3S2和富缺陷NiFe材料的结构和催化优势,以及异质界面的强电子相互作用,使得NiFe/Ni3S2/NF催化电极表现出优异的析氧催化性能:达到100 mA·cm-2时的析氧过电位仅为273 mV,远优于大多数已报道的Ni/Fe基复合材料。值得注意的是,在1 mol·L-1 KOH溶液中,仅需~372 mV的过电位即可稳定输出1 000 mA·cm-2的高电流密度达27 h以上。 相似文献
3.
通过简便的两步电沉积法在泡沫镍表面有效复合非晶态Ni3S2材料与富缺陷的NiFe双金属羟基氧化物,从而构建了NiFe/Ni3S2/NF三维分级纳米异质电极。受益于非晶态Ni3S2和富缺陷NiFe材料的结构和催化优势,以及异质界面的强电子相互作用,使得NiFe/Ni3S2/NF催化电极表现出优异的析氧催化性能:达到100 mA·cm-2时的析氧过电位仅为273 mV,远优于大多数已报道的Ni/Fe基复合材料。值得注意的是,在1 mol·L-1KOH溶液中,仅需~372 mV的过电位即可稳定输出1000 mA·cm-2的高电流密度达27 h以上。 相似文献
1