首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3552篇
  免费   202篇
  国内免费   182篇
化学   1767篇
晶体学   3篇
力学   88篇
综合类   12篇
数学   408篇
物理学   494篇
综合类   1164篇
  2024年   12篇
  2023年   49篇
  2022年   116篇
  2021年   128篇
  2020年   130篇
  2019年   84篇
  2018年   87篇
  2017年   124篇
  2016年   123篇
  2015年   100篇
  2014年   147篇
  2013年   205篇
  2012年   207篇
  2011年   212篇
  2010年   134篇
  2009年   179篇
  2008年   156篇
  2007年   203篇
  2006年   191篇
  2005年   156篇
  2004年   131篇
  2003年   118篇
  2002年   91篇
  2001年   93篇
  2000年   81篇
  1999年   83篇
  1998年   64篇
  1997年   53篇
  1996年   67篇
  1995年   54篇
  1994年   47篇
  1993年   51篇
  1992年   43篇
  1991年   41篇
  1990年   29篇
  1989年   36篇
  1988年   33篇
  1987年   17篇
  1986年   5篇
  1985年   7篇
  1984年   11篇
  1983年   5篇
  1982年   9篇
  1981年   4篇
  1980年   5篇
  1979年   7篇
  1978年   3篇
  1974年   1篇
  1973年   1篇
  1955年   1篇
排序方式: 共有3936条查询结果,搜索用时 8 毫秒
961.
962.
流动注射分析法测定水样中的NO2--N和NO3--N   总被引:3,自引:0,他引:3       下载免费PDF全文
罗喜清 《广西科学》2001,8(2):108-110
采用流动注射技术测定水样中的NO-/2-N和NO-/3-N.以N-(1-萘基)乙烯二胺盐酸盐和对氨基苯磺酸为显色剂,在540nm下比色测定NO-/2-N的含量.水样中的NO-/3-N,在稀醋酸条件下用锌粉将其预还原成NO-/2-N后,也在上述相同的条件下测定其含量.NO-/2-N的检出限为0.005×10-/6,NO-/3-N的检出限为0.05×10-/6,分析速度为65次/小时.  相似文献   
963.
本文提出一个新的萃取反萃取体系,用石墨炉原子吸收光谱法连续测定地质样品中的An、Ag、In、Ga四种元素,不但有效地抑制了共存元素的干扰,而且能提高测定灵敏度和精密度。文中讨论了不同石墨管对测定的影响及元素的原子化过程,较深入探讨镍对镓的基体改进作用和机理。样品分析结果与推荐值一致。  相似文献   
964.
本文根据采样控制系统输出信号的类型,作了四个基本规定,建立了求取采样输出量的二个公式。对前向通道中无采样器的系统及某一回路无采样器的系统的采样输出量求解问题,给出了解决办法。  相似文献   
965.
在给定的费用函数下,当各阶段不等概抽样样本量分配为等比例分配时,讨论n阶段不等概抽样样本量选择的问题,并给出了一般结果.  相似文献   
966.
针对支持向量机(Support Vector Machine,SVM)处理大规模样本分类的学习效率降低问题,提出两阶段学习的支持向量机算法。该方法首先在正负类分别进行无监督聚类,提取各个聚类质心组成约简训练集,进行初次SVM训练;然后,根据初次训练结果选取边界样本集,参与第二次SVM训练。在UCI数据集上的实验结果表明,所提方法在保持分类泛化性能的同时,提高了模型的训练速度。  相似文献   
967.
取纯培养条件下的铜绿微囊藻水样,分别用三氯化铁、聚合氯化铝、硫酸铝等3种药剂作混凝去除铜绿微囊藻烧杯试验,结果表明:聚合氯化铝混凝效果优于其他2种药剂,具有药剂投加量少(30~40mg/L)、矾花形成快、矾花沉降性能好、除藻效率高等特点.在聚合氯化铝最佳混凝条件下,投加聚丙烯酰胺助凝试验,发现添加6mg/L的聚丙烯酰胺只使除藻效率在原有基础上提高3%.铜绿微囊藻水样的pH对聚合氯化铝的混凝效果有明显影响,产生最佳混凝的pH值范围为6.0~7.0之间.  相似文献   
968.
The MAS solid‐state NMR has been a powerful technique for studying membrane proteins within the native‐like lipid bilayer environment. In general, RF irradiation in MAS NMR experiments can heat and potentially destroy expensive membrane protein samples. However, under practical MAS NMR experimental conditions, detailed characterization of RF heating effect of lipid bilayer samples is still lacking. Herein, using 1H chemical shift of water for temperature calibration, we systematically study the dependence of RF heating on hydration levels and salt concentrations of three lipids in MAS NMR experiments. Under practical 1H decoupling conditions used in biological MAS NMR experiments, three lipids show different dependence of RF heating on hydration levels as well as salt concentrations, which are closely associated with the properties of lipids. The maximum temperature elevation of about 10 °C is similar for the three lipids containing 200% hydration, which is much lower than that in static solid‐state NMR experiments. The RF heating due to salt is observed to be less than that due to hydration, with a maximum temperature elevation of less than 4 °C in the hydrated samples containing 120 mmol l?1 of salt. Upon RF irradiation, the temperature gradient across the sample is observed to be greatly increased up to 20 °C, as demonstrated by the remarkable broadening of 1H signal of water. Based on detailed characterization of RF heating effect, we demonstrate that RF heating and temperature gradient can be significantly reduced by decreasing the hydration levels of lipid bilayer samples from 200% to 30%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
969.
Montelukast (MKT), a leukotriene receptor antagonist, degrades when it is exposed to light. The analysis of MKT content in blood plasma by high-pressure liquid chromatography requires several sample preparation steps including deproteinization. This study aimed to evaluate MKT photodegradation in blood plasma samples and optimize a deproteinization method to reduce MKT photodegradation, and thereby improve analytical quality. We evaluated the stability of MKT in water and plasma in real time using high-pressure liquid chromatography and optimized a sample deproteinization procedure by comparing the effectiveness of several deproteinization methods. When exposed to light, MKT photodegraded quickly. Although MKT photodegradation was slightly slower than that in water, a half portion (55%) of the MKT in plasma degraded within 2 h when exposed to light. The rate of MKT photodegradation was dramatically reduced by sample deproteinization using ZnSO4–Ba(OH)2, but it was accelerated by deproteinization through precipitation using methanol or acetonitrile. These results suggest that precautions should be taken when preparing plasma samples for the analysis of MKT, and that deproteinization of such samples using ZnSO4–Ba(OH)2 can reduce the risk of analytical error arising from MKT photodegradation.  相似文献   
970.
A simple and sensitive method has been developed for the determination of chloroacetic acids and acetic acid in water using capillary zone electrophoresis under modified electroosmotic flow with indirect UV detection. Potassium hydrogen phthalate at pH 5.40 was used as background electrolyte (BGE), and hexadecyltrimethylammonium bromide was used as electroosmotic flow modifier. Field-amplified sample injection (FASI) method was used to enhance the sensitivity. Results showed that the limit of detection for these analytes was enhanced more than 15-fold and the repeatabilities were good with relative standard deviations (RSDs %) of migration time and corrected peak areas being below 0.33%, 4.45% (intra-day) and 0.87%, 9.67% (inter-day), respectively. An off-line liquid–liquid extraction (LLE) process with methyl tert-butyl ether was carried out to detect these compounds in water samples. The dissociation constants of acetic acid and monochloroacetic acid (MCA) were determined with two methods and the results obtained were consistent with the reference values.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号