首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23552篇
  免费   2034篇
  国内免费   1106篇
化学   4853篇
晶体学   18篇
力学   1414篇
综合类   106篇
数学   8604篇
物理学   5087篇
综合类   6610篇
  2024年   40篇
  2023年   206篇
  2022年   301篇
  2021年   466篇
  2020年   492篇
  2019年   505篇
  2018年   412篇
  2017年   473篇
  2016年   730篇
  2015年   641篇
  2014年   996篇
  2013年   1534篇
  2012年   1085篇
  2011年   1160篇
  2010年   981篇
  2009年   1329篇
  2008年   1453篇
  2007年   1612篇
  2006年   1306篇
  2005年   1046篇
  2004年   945篇
  2003年   964篇
  2002年   889篇
  2001年   737篇
  2000年   756篇
  1999年   715篇
  1998年   647篇
  1997年   510篇
  1996年   445篇
  1995年   399篇
  1994年   362篇
  1993年   385篇
  1992年   353篇
  1991年   248篇
  1990年   232篇
  1989年   226篇
  1988年   228篇
  1987年   149篇
  1986年   114篇
  1985年   125篇
  1984年   94篇
  1983年   30篇
  1982年   67篇
  1981年   58篇
  1980年   56篇
  1979年   42篇
  1978年   36篇
  1977年   37篇
  1976年   35篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
The silaboration of [1.1.1]propellane enables direct introduction of B and Si functional groups onto the bicyclo[1.1.1]pentane (BCP) scaffold in high yield under mild, additive‐free conditions. The silaborated BCP can be obtained on a gram‐scale in a single step without the need for column‐chromatographic purification, and is storable and easy to handle, providing a versatile synthetic intermediate for BCP derivatives. We also describe various conversions of the C?B/C?Si bonds on the BCP scaffold, including development of a modified Suzuki–Miyaura cross‐coupling reaction at the highly sterically hindered bridgehead sp3 carbon center of the BCP skeleton using a combination of highly activated BCP boronic esters, copper(I) oxide, and a PdCl2(dppf) catalyst system.  相似文献   
982.
Integrated differential phase‐contrast scanning transmission electron microscopy (iDPC‐STEM) is capable of directly probing guest molecules in zeolites, owing to its sufficient and interpretable image contrast for both heavy and light elements under low‐dose conditions. This unique ability is demonstrated by imaging volatile organic compounds adsorbed in zeolite Silicalite‐1; iDPC‐STEM was then used to investigate molybdenum supported on various zeolites including Silicalite‐1, ZSM‐5, and mordenite. Isolated single‐Mo clusters were observed in the micropores of ZSM‐5, demonstrating the crucial role of framework Al in driving Mo atomically dispersed into the micropores. Importantly, the specific one‐to‐one Mo‐Al interaction makes it possible to locate Al atoms, that is, catalytic active sites, in the ZSM‐5 framework from the images, according to the positions of Mo atoms in the micropores.  相似文献   
983.
Pathway complexity has become an important topic in recent years due to its relevance in the optimization of molecular assembly processes, which typically require precise sample preparation protocols. Alternatively, competing aggregation pathways can be controlled by molecular design, which primarily rely on geometrical changes of the building blocks. However, understanding how to control pathway complexity by molecular design remains elusive and new approaches are needed. Herein, we exploit positional isomerism as a new molecular design strategy for pathway control in aqueous self‐assembly. We compare the self‐assembly of two carboxyl‐functionalized amphiphilic BODIPY dyes that solely differ in the relative position of functional groups. Placement of the carboxyl group at the 2‐position enables efficient pairwise H‐bonding interactions into a single thermodynamic species, whereas meso‐substitution induces pathway complexity due to competing hydrophobic and hydrogen bonding interactions. Our results show the importance of positional engineering for pathway control in aqueous self‐assembly.  相似文献   
984.
Developing methodologies for on‐demand control of the release of a molecular guest requires the rational design of stimuli‐responsive hosts with functional cavities. While a substantial number of responsive metallacages have already been described, the case of coordination‐tweezers has been less explored. Herein, we report the first example of a redox‐triggered guest release from a metalla‐assembled tweezer. This tweezer incorporates two redox‐active panels constructed from the electron‐rich 9‐(1,3‐dithiol‐2‐ylidene)fluorene unit that are facing each other. It dimerizes spontaneously in solution and the resulting interpenetrated supramolecular structure can dissociate in the presence of an electron‐poor planar unit, forming a 1:1 host–guest complex. This complex dissociates upon tweezer oxidation/dimerization, offering an original redox‐triggered molecular delivery pathway.  相似文献   
985.
Indolo[3,2‐b]carbazole presents a π‐skeleton with a remarkable electronic structure and interesting potential applications. It is, however, also associated with ambiguity and controversy. Herein, new derivatives of indolo[3,2‐b]carbazole are reported and they have enabled a comprehensive study on the electronic structure of indolo[3,2‐b]carbazole and the development of a new n‐type organic semiconductor. Experimental and computational studies show that indolo[3,2‐b]carbazole has a largely localized p‐benzoquinonediimine moiety and significant antiaromaticity. When substituted with (4‐silylethynyl)phenyl groups, the indolo[3,2‐b]carbazole exhibits one‐dimensional π–π stacking and functions as an n‐type organic semiconductor in solution‐processed field effect transistors.  相似文献   
986.
Hierarchical self‐assembly of building blocks over multiple length scales is ubiquitous in living organisms. Microtubules are one of the principal cellular components formed by hierarchical self‐assembly of nanometer‐sized tubulin heterodimers into protofilaments, which then associate to form micron‐length‐scale, multi‐stranded tubes. This peculiar biological process is now mimicked with a fully synthetic molecule, which forms a 1:1 host‐guest complex with cucurbit[7]uril as a globular building block, and then polymerizes into linear poly‐pseudorotaxanes that associate laterally with each other in a self‐shape‐complementary manner to form a tubular structure with a length over tens of micrometers. Molecular dynamic simulations suggest that the tubular assembly consists of eight poly‐pseudorotaxanes that wind together to form a 4.5 nm wide multi‐stranded tubule.  相似文献   
987.
Reported here are the syntheses, conformational structures, electrochemical properties, and noncovalent anion binding of corona[5]arenes. A (3+2) fragment coupling reaction proceeded efficiently under mild reaction conditions to produce a number of novel heteroatom‐ and methylene‐bridged corona[3]arene[2]tetrazine macrocycles. Selective oxidation of the sulfur atom between two phenylene rings afforded sulfoxide‐ and sulfone‐linked corona[5]arenes in good yields. All corona[5]arenes synthesized adopted similar 1,2,4‐alternate conformational structures, forming pentagonal cavities. The cavity sizes and the electronic properties such as redox potentials, were measured with CV and DPV, and were influenced by the different bridging units. As electron‐deficient macrocycles, the acquired corona[3]arene[2]tetrazines served as highly selective hosts, forming complexes with the hydrogen‐bonded dimer of dihydrogen phosphate through cooperative anion–π interactions.  相似文献   
988.
Realizing spatiotemporal patterns out of a chemical reaction diffusion system remains an experimental challenge owing to the difficulty in overcoming the stringent condition of diffusion driven instability. Herein, by considering the spatially extended Gray-Scott model system, we have investigated how the cross diffusivities of the reactants involved influence the nature and dynamics of spatiotemporal patterns. Our study unravels that in absence of diffusion driven instability, spatially inhomogeneous patterns can be obtained for the Gray-Scott model system, and unstable time dependent patterns can be stabilized just by adjusting cross diffusivities of the reactants. Interestingly, the effect of cross diffusion in presence of the diffusion driven instability can differentially alter the speed of pattern formation, and potentially modify the nature of the spatiotemporal patterns obtained under different parametric conditions. Experimental verification of our findings may allow us to observe spatiotemporal patterns beyond the regime of classical Turing instability.  相似文献   
989.
Adaptivity is an essential trait of life. One type of adaptivity is the reconfiguration of a functional system states by correlating sensory inputs. We report polymer transformers, which can adaptively reconfigure their composition from a state of a mixed copolymer to being enriched in either monomer A or B. This is achieved by embedding and hierarchically interconnecting two chemically fueled activation/deactivation enzymatic reaction networks for both monomers via a joint activation pathway (network level) and an AB linker monomer reactive to both A and B (species level). The ratio of enzymes governing the individual deactivation pathways (our external signals) control the enrichment behavior in the dynamic state. The method shows high programmability of the reconfigured state, rejuvenation of transformation cycles, and quick in situ adaptation. As a proof‐of‐concept, we showcase this dynamic reconfiguration for colloidal surface functionalities.  相似文献   
990.
Tritopic ion-pair receptors can bind bivalent salts in solution; yet, these salts have a tendency to form ion-pairs even in the absence of receptors. The extent to which such receptors can enhance ion pairing has however remained elusive. Here, we study ion pairing of M2+ (Ba2+, Sr2+) and X (I, ClO4) in acetonitrile with and without a dichlorooxacalix[2]arene[2]triazine-related receptor containing a pentaethylene-glycol moiety. We find marked ion association already in receptor-free solutions. When present, most of the MX+ ion-pairs are bound to the receptor and the overall degree of ion association is enhanced due to coordinative, hydrogen-bonding, and anion-π interactions. The receptor shows higher selectivity for iodides but also stabilizes perchlorates, despite the latter are often considered as weakly coordinating anions. Our results show that ion-pair binding is strongly correlated to ion pairing in these solutions, thereby highlighting the importance of taking ion association in organic solvents into account.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号