首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23640篇
  免费   2038篇
  国内免费   1120篇
化学   4874篇
晶体学   18篇
力学   1423篇
综合类   106篇
数学   8605篇
物理学   5157篇
综合类   6615篇
  2024年   44篇
  2023年   212篇
  2022年   348篇
  2021年   469篇
  2020年   495篇
  2019年   510篇
  2018年   413篇
  2017年   476篇
  2016年   734篇
  2015年   645篇
  2014年   998篇
  2013年   1536篇
  2012年   1088篇
  2011年   1165篇
  2010年   984篇
  2009年   1330篇
  2008年   1453篇
  2007年   1614篇
  2006年   1308篇
  2005年   1048篇
  2004年   946篇
  2003年   964篇
  2002年   889篇
  2001年   739篇
  2000年   756篇
  1999年   715篇
  1998年   648篇
  1997年   510篇
  1996年   445篇
  1995年   399篇
  1994年   362篇
  1993年   385篇
  1992年   353篇
  1991年   248篇
  1990年   232篇
  1989年   226篇
  1988年   228篇
  1987年   149篇
  1986年   114篇
  1985年   125篇
  1984年   94篇
  1983年   30篇
  1982年   67篇
  1981年   58篇
  1980年   56篇
  1979年   42篇
  1978年   36篇
  1977年   37篇
  1976年   35篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
961.
The dative Pd→B interaction in a series of RDPBR’ Pd0 and PdII complexes (RDPBR’=(o-PR2C6H4)2BR’, diphosphinoborane) was analyzed using XRD, 11B NMR spectroscopy and NBO/NLMO calculations. The borane acceptor discriminates between the oxidation state PdII and Pd0, stabilizing the latter. Reaction of lithium amides with [(RDPBR’)PdII(4-NO2C6H4)I] chemoselectively yields the C−N coupling product. DFT modelling indicates no significant impact of PdII→B coordination on the inner-sphere reductive elimination rate.  相似文献   
962.
The development of selenophene‐flanked DPP (SeDPP) based copolymers, especially for the ambipolar ones, lags behind other aromatic group flanked DPP‐based polymers. Herein, we report two new ambipolar SeDPP‐based conjugated polymers. One is the alternating polymer PSeDPPFT with normal SeDPP and 3,4‐difluorothiophene units. The other is PSeFDFT , in which the electron acceptor unit is replaced by a new SeDPP derivative, referred as to half‐fused SeDPP. The more planar structure of half‐fused SeDPP endows the backbone of PSeFDFT with good rigidity and planarity. Both polymers exhibit ambipolar transporting properties in air. The PSeFDFT based field‐effect transistors (FETs) display higher and more balanced ambipolar properties with μhave of 0.27 cm2·V–1·s–1, μeave of 0.18 cm2·V–1·s–1, and μhave/μeave of 1.5 than those of PSeDPPFT (μhave = 0.11 cm2·V–1·s–1, μeave = 0.042 cm2·V–1·s–1, and μh/μe = 2.6). This is attributed to the more planar structure, lower LUMO level, higher HOMO level, and better interchain packing orientations of PSeFDFT by comparing with PSeDPPFT . Therefore, a new molecular design strategy to modulate the hole and electron transporting properties is proposed for conjugated D‐A polymers.  相似文献   
963.
964.
Bioelectrochemical systems (BESs) have been intensively studied in the past decade, but precise understanding of BESs performance is hindered by unclear definition of several key parameters. Herein, we analyze and discuss three sets of terms about conversion efficiency, energy performance, and pilot scale. It is suggested that ‘Coulombic recovery’ can avoid the misleading results because of different organic removals, compared with ‘Coulombic efficiency.’ Power density is not a suitable term to describe energy performance of BESs, and energy production/consumption should be reported in the energy unit such as kWh. Pilot-scale BESs should meet several criteria, including hydraulic capacity, use of actual wastewater, non-laboratory condition, and long-term operation. Proper use of those terms is strongly encouraged and will be critically important to BESs research and development.  相似文献   
965.
Biosensors are emerging as efficient (sensitive and selective) and affordable analytical diagnostic tools for early-stage disease detection, as required for personalized health wellness management. Low-level detection of a targeted disease biomarker (pM level) has emerged extremely useful to evaluate the progression of disease under therapy. Such collected bioinformatics and its multi-aspects-oriented analytics is in demand to explore the effectiveness of a prescribed treatment, optimize therapy, and correlate biomarker level with disease pathogenesis. Owing to nanotechnology-enabled advancements in sensing unit fabrication, device integration, interfacing, packaging, and sensing performance at point-of-care (POC) has rendered diagnostics according to the requirements of disease management and patient disease profile i.e. in a personalized manner. Efforts are continuously being made to promote the state of art biosensing technology as a next-generation non-invasive disease diagnostics methodology. Keeping this in view, this progressive opinion article describes personalized health care management related analytical tools which can provide access to better health for everyone, with overreaching aim to manage healthy tomorrow timely. Considering accomplishments and predictions, such affordable intelligent diagnostics tools are urgently required to manage COVID-19 pandemic, a life-threatening respiratory infectious disease, where a rapid, selective and sensitive detection of human beta severe acute respiratory system coronavirus (SARS-COoV-2) protein is the key factor.  相似文献   
966.
Since 1996, a growing number of strained macrocycles, comprising only sp2‐ or sp‐hybridized carbon atoms within the ring, have become synthetically accessible, with the [n]cycloparaphenyleneacetylenes ( CPPAs ) and the [n]cycloparaphenylenes ( CPPs ) being the most prominent examples. Now that robust and relatively general synthetic routes toward a diverse range of nanohoop structures have become available, the research focus is beginning to shift towards the exploration of their properties and applications. From a supramolecular chemistry perspective, these macrocycles offer unique opportunities as a result of their near‐perfect circular shape, the unusually high degree of shape‐persistence, and the presence of both convex and concave π‐faces. In this Minireview, we give an overview on the use of strained carbon‐rich nanohoops in host–guest chemistry, the preparation of mechanically interlocked architectures, and crystal engineering.  相似文献   
967.
The silaboration of [1.1.1]propellane enables direct introduction of B and Si functional groups onto the bicyclo[1.1.1]pentane (BCP) scaffold in high yield under mild, additive‐free conditions. The silaborated BCP can be obtained on a gram‐scale in a single step without the need for column‐chromatographic purification, and is storable and easy to handle, providing a versatile synthetic intermediate for BCP derivatives. We also describe various conversions of the C?B/C?Si bonds on the BCP scaffold, including development of a modified Suzuki–Miyaura cross‐coupling reaction at the highly sterically hindered bridgehead sp3 carbon center of the BCP skeleton using a combination of highly activated BCP boronic esters, copper(I) oxide, and a PdCl2(dppf) catalyst system.  相似文献   
968.
Integrated differential phase‐contrast scanning transmission electron microscopy (iDPC‐STEM) is capable of directly probing guest molecules in zeolites, owing to its sufficient and interpretable image contrast for both heavy and light elements under low‐dose conditions. This unique ability is demonstrated by imaging volatile organic compounds adsorbed in zeolite Silicalite‐1; iDPC‐STEM was then used to investigate molybdenum supported on various zeolites including Silicalite‐1, ZSM‐5, and mordenite. Isolated single‐Mo clusters were observed in the micropores of ZSM‐5, demonstrating the crucial role of framework Al in driving Mo atomically dispersed into the micropores. Importantly, the specific one‐to‐one Mo‐Al interaction makes it possible to locate Al atoms, that is, catalytic active sites, in the ZSM‐5 framework from the images, according to the positions of Mo atoms in the micropores.  相似文献   
969.
Pathway complexity has become an important topic in recent years due to its relevance in the optimization of molecular assembly processes, which typically require precise sample preparation protocols. Alternatively, competing aggregation pathways can be controlled by molecular design, which primarily rely on geometrical changes of the building blocks. However, understanding how to control pathway complexity by molecular design remains elusive and new approaches are needed. Herein, we exploit positional isomerism as a new molecular design strategy for pathway control in aqueous self‐assembly. We compare the self‐assembly of two carboxyl‐functionalized amphiphilic BODIPY dyes that solely differ in the relative position of functional groups. Placement of the carboxyl group at the 2‐position enables efficient pairwise H‐bonding interactions into a single thermodynamic species, whereas meso‐substitution induces pathway complexity due to competing hydrophobic and hydrogen bonding interactions. Our results show the importance of positional engineering for pathway control in aqueous self‐assembly.  相似文献   
970.
Developing methodologies for on‐demand control of the release of a molecular guest requires the rational design of stimuli‐responsive hosts with functional cavities. While a substantial number of responsive metallacages have already been described, the case of coordination‐tweezers has been less explored. Herein, we report the first example of a redox‐triggered guest release from a metalla‐assembled tweezer. This tweezer incorporates two redox‐active panels constructed from the electron‐rich 9‐(1,3‐dithiol‐2‐ylidene)fluorene unit that are facing each other. It dimerizes spontaneously in solution and the resulting interpenetrated supramolecular structure can dissociate in the presence of an electron‐poor planar unit, forming a 1:1 host–guest complex. This complex dissociates upon tweezer oxidation/dimerization, offering an original redox‐triggered molecular delivery pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号