首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2312篇
  免费   153篇
  国内免费   116篇
化学   998篇
晶体学   1篇
力学   55篇
综合类   27篇
数学   16篇
物理学   325篇
综合类   1159篇
  2024年   7篇
  2023年   46篇
  2022年   58篇
  2021年   73篇
  2020年   60篇
  2019年   69篇
  2018年   49篇
  2017年   82篇
  2016年   74篇
  2015年   62篇
  2014年   88篇
  2013年   125篇
  2012年   146篇
  2011年   120篇
  2010年   105篇
  2009年   122篇
  2008年   120篇
  2007年   134篇
  2006年   122篇
  2005年   119篇
  2004年   119篇
  2003年   95篇
  2002年   72篇
  2001年   84篇
  2000年   94篇
  1999年   35篇
  1998年   34篇
  1997年   43篇
  1996年   29篇
  1995年   34篇
  1994年   27篇
  1993年   29篇
  1992年   25篇
  1991年   11篇
  1990年   16篇
  1989年   14篇
  1988年   12篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1971年   2篇
排序方式: 共有2581条查询结果,搜索用时 906 毫秒
81.
82.
Collagen is the most abundant extracellular matrix protein that is widely used in tissue engineering (TE). There is little research done on printing pure collagen. To understand the bottlenecks in printing pure collagen, it is imperative to understand collagen from a bottom‐up approach. Here it is aimed to provide a comprehensive overview of collagen printing, where collagen assembly in vivo and the various sources of collagen available for TE application are first understood. Next, the current printing technologies and strategy for printing collagen‐based materials are highlighted. Considerations and key challenges faced in collagen printing are identified. Finally, the key research areas that would enhance the functionality of printed collagen are presented.  相似文献   
83.
目的:探讨高强度训练(HIT)与高负荷训练(HVT),对健美操运动员组织损伤的影响.方法:针对健美操选手进行为期12周高强度复合式训练,并于运动前、训练中、训练后对受试者血清肌肉损伤的生化指标、体脂率等进行监测.结果:(1)高强度复合式训练能显著降低受试者体质量、体脂、甘油三酯、总胆固醇及尿素氮浓度;(2)提升血液葡萄糖、乳酸、肌酸酐浓度,增强天门冬胺酸转胺酶及肌酸激酶活性;(3)血液中的肌肉损伤指标值的提升与体脂下降率呈负相关,这暗示高强度复合式训练有利于肌肉再生,从而促使脂肪组织下降.结论:12周高强度复合式训练使健美操选手体脂明显减少、血液中肌肉损伤指标值提升,表明该训练方式可以促使肌肉再生,吸引全身含碳资源重新分配,使脂肪组织下降、肌肉组织增加,强度越高,碳资源重新分配效果越好.  相似文献   
84.
85.
Scientific evidence has shown an association between organochlorine compounds (OCC) exposure and human health hazards. Concerning this, OCC detection in human adipose samples has to be considered a public health priority. This study evaluated the efficacy of various solid‐phase extraction (SPE) and cleanup methods for OCC determination in human adipose tissue. Octadecylsilyl endcapped (C18‐E), benzenesulfonic acid modified silica cation exchanger (SA), poly(styrene‐divinylbenzene (EN) and EN/RP18 SPE sorbents were evaluated. The relative sample cleanup provided by these SPE columns was evaluated using gas chromatography with electron capture detection (GC–ECD). The C18‐E columns with strong homogenization were found to provide the most effective cleanup, removing the greatest amount of interfering substance, and simultaneously ensuring good analyte recoveries higher than 70%. Recoveries > 70% with standard deviations (SD) < 15% were obtained for all compounds under the selected conditions. Method detection limits were in the 0.003–0.009 mg/kg range. The positive samples were confirmed by gas chromatography coupled with tandem mass spectrometry (GC‐MS/MS). The highest percentage found of the OCC in real samples corresponded to HCB, o,p′‐DDT and methoxychlor, which were detected in 80 and 95% of samples analyzed respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
86.
For identification of clinically relevant masses to predict status, grade, relapse and prognosis of colorectal cancer, we applied Matrix‐assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) to a tissue micro array containing formalin‐fixed and paraffin‐embedded tissue samples from 349 patients. Analysis of our MALDI‐IMS data revealed 27 different m/z signals associated with epithelial structures. Comparison of these signals showed significant association with status, grade and Ki‐67 labeling index. Fifteen out of 27 IMS signals revealed a significant association with survival. For seven signals (m/z 654, 776, 788, 904, 944, 975 and 1013) the absence and for eight signals (m/z 643, 678, 836, 886, 898, 1095, 1459 and 1477) the presence were associated with decreased life expectancy, including five masses (m/z 788, 836, 904, 944 and 1013) that provided prognostic information independently from the established prognosticators pT and pN. Combination of these five masses resulted in a three‐step classifier that provided prognostic information superior to univariate analysis. In addition, a total of 19 masses were associated with tumor stage, grade, metastasis and cell proliferation. Our data demonstrate the suitability of combining IMS and large‐scale tissue micro arrays to simultaneously identify and validate clinically useful molecular marker. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
87.
88.
Measurement of test article concentration in tissue samples has been an important part of pharmacokinetic study and has helped to co‐relate pharmacokinetic/pharmacodynamic relationships since the 1950s. Bioanalysis of tissue samples using LC–MS/MS comes with unique challenges in terms of sample handling and inconsistent analyte response owing to nonvolatile matrix components. Matrix effect is a phenomenon where the target analyte response is either suppressed or enhanced in the presence of matrix components. Based on previous reports electrospray ionization (ESI) mode of ionization is believed to be more affected by matrix components than atmospheric pressure chemical ionization (APCI) or atmospheric pressure photoionization. To explore the impact of ionization source with respect to bioanalysis of tissue samples, five structurally diverse compounds – atenolol, verapamil, diclofenac, propranolol and flufenamic acid – were selected. Quality control standards were spiked into 10 different biological matrices like whole blood, liver, heart, brain, spleen, kidney, skeletal muscle, eye and skin tissue and were quantified against calibration standards prepared in rat plasma. Quantitative bioanalysis was performed utilizing both APCI and ESI mode and results were compared. Quality control standards when analyzed with APCI mode were found to be more consistent in terms of accuracy and precision as compared with ESI mode. Additionally, for some instances, up to 20‐fold broader dynamic linearity range was observed with APCI mode as compared with ESI mode. As phospholid interferences have poor response in APCI mode, protein precipitation extraction technique can be used for multimatrix quantitation, which is more amenable to automation. The approach of multiple biological matrix quantitation against a single calibration curve helps bioanalysts to reduce turnaround time. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
89.
Shenkang injection is a traditional Chinese formula with good curative effect on chronic renal failure. In this paper, a novel, rapid and sensitive ultra‐high‐performance liquid chromatography coupled with Q Exactive hybrid quadrupole Orbitrap high‐resolution accurate mass spectrometry was developed and validated for simultaneous determination of seven bioactive constituents of Shenkang injection in rat plasma and tissues after intravenous administration. Acetonitrile was used as a protein precipitation agent in biological samples disposal with carbamazepine as internal standard. The chromatographic separation was carried out on a C18 column with a gradient mobile phase consisting of acetonitrile and water (containing 0.1% formic acid). The MS analysis was performed in the full‐scan positive and negative ion mode. The lower limits of quantification for the seven analytes in rat plasma and tissues were 0.1–10 ng/mL. The validated method was successfully applied to tissue distribution and pharmacokinetic studies of Shenkang injection after intravenous administration. The results of the tissue distribution study showed that the high concentrations of seven constituents were primarily in the kidney tract. This is the first report of the application of Q‐Orbitrap with full‐scan mass spectrometry in tissue distribution and pharmacokinetic studies of Shenkang injection.  相似文献   
90.
The synthesis of poly(2‐oxazoline)s has been known since the 1960s. In the last two decades, they have risen in popularity thanks to improvements in their synthesis and the realization of their potential in the biomedical field due to their “stealth” properties, stimuli responsiveness, and tailorable properties. Even though the bulk of the research to date has been on linear forms of the polymer, they are also of interest for creating network structures due to the relatively easy introduction of reactive functional groups during synthesis that can be cross‐linked under a variety of conditions. This opinion article briefly reviews the history of poly(2‐oxazoline)s and examines the in vivo data on soluble poly(2‐oxazoline)s to date in an effort to predict how hydrogels may perform as implantable materials. This is followed by an overview of the most recent hydrogel synthesis methods and emerging applications, and is concluded with a section on the future directions predicted for these fascinating yet underutilized polymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号