首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1846篇
  免费   182篇
  国内免费   326篇
化学   1502篇
晶体学   36篇
力学   14篇
综合类   11篇
物理学   250篇
综合类   541篇
  2024年   4篇
  2023年   22篇
  2022年   40篇
  2021年   64篇
  2020年   69篇
  2019年   52篇
  2018年   59篇
  2017年   100篇
  2016年   80篇
  2015年   100篇
  2014年   84篇
  2013年   175篇
  2012年   118篇
  2011年   103篇
  2010年   82篇
  2009年   89篇
  2008年   84篇
  2007年   109篇
  2006年   92篇
  2005年   90篇
  2004年   83篇
  2003年   63篇
  2002年   68篇
  2001年   41篇
  2000年   48篇
  1999年   46篇
  1998年   49篇
  1997年   51篇
  1996年   37篇
  1995年   38篇
  1994年   43篇
  1993年   31篇
  1992年   37篇
  1991年   22篇
  1990年   20篇
  1989年   16篇
  1988年   17篇
  1987年   10篇
  1986年   9篇
  1985年   2篇
  1984年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有2354条查询结果,搜索用时 994 毫秒
141.
《中国化学快报》2021,32(10):3155-3158
Accurate detection of hydrogen sulfide (H2S) is of great significance for environmental monitoring and protection. We propose a colorimetric method for the detection of H2S by the use of mixed-node Cu-Fe metal organic frameworks (Cu-Fe MOFs) as highly efficient mimic enzymes for target-induced deactivation. The Cu-Fe MOFs were synthesized by a simple solvothermal method and could catalyze the H2O2 mediated oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to oxTMB with a blue color. The presence of dissolved H2S would deactivate the mimic enzymes, and then the blue color disappeared. The mechanism of the sensor was discussed by steady-state kinetic analysis. The designed assay was highly sensitive for H2S detection with a linear range of 0−80 μmol/L and a detection limit of 1.6 μmol/L. Moreover, some potential substances in the water samples had no interference. This method with the advantages of low cost, high sensitivity, selectivity, and visual readout with the naked eye was successfully applied to the determination of H2S in industrial wastewater samples.  相似文献   
142.
A [Fe-S-Fe] subunit with a single sulfide bridging two low-coordinate iron ions is the supposed active site of the iron-molybdenum co-factor (FeMoco) of nitrogenase. Here we report a dinuclear monosulfido bridged diiron(II) complex with a similar complex geometry that can be oxidized stepwise to diiron(II/III) and diiron(III/III) complexes while retaining the [Fe-S-Fe] core. The series of complexes has been characterized crystallographically, and electronic structures have been studied using, inter alia, 57Fe Mössbauer spectroscopy and SQUID magnetometry. Further, cleavage of the [Fe-S-Fe] unit by CS2 is presented.  相似文献   
143.
The effect of gold nanoparticle-decorated molybdenum sulfide (AuNP-MoS2) nanocomposites on amyloid-β-40 (Aβ40) aggregation was investigated. The interesting discovery was that the effect of AuNP-MoS2 nanocomposites on Aβ40 aggregation was contradictory. Low concentration of AuNP-MoS2 nanocomposites could enhance the nucleus formation of Aβ40 peptides and accelerate Aβ40 fibrils aggregation. However, although high concentration of AuNP-MoS2 nanocomposites could enhance the nucleus formation of Aβ40 peptides, it eventually inhibited Aβ40 aggregation process. It might be attributed to the interaction between AuNP-MoS2 nanocomposites and Aβ40 peptides. For low concentration of AuNP-MoS2 nanocomposites, it was acted as nuclei, resulting in the acceleration of the nucleation process. However, the structural flexibility of Aβ40 peptides was limited as the concentration of AuNP-MoS2 nanocomposites was increased, resulting in the inhibition of Aβ40 aggregation. These findings suggested that AuNP-MoS2 nanocomposites might have a great potential to design new multifunctional material for future treatment of amyloid-related diseases.  相似文献   
144.
《Current Applied Physics》2015,15(7):761-764
ZnS thin films were deposited on glass substrates by a chemical bath deposition method using a substrate activation process in which aluminum ions become “contaminants” that act as a nucleation center for active components within the deposition solution. The structure and morphology results demonstrate that the films have a ZnS sphalerite crystal structure with a particle size less than 15 nm, and the films consist of small homogeneous grains. The effects of the substrate activation process on the band gap energies and donor-acceptor pair luminescence process were also investigated. A green emission centered at 502 nm was produced due to donor-acceptor transitions from the aluminum acceptor to the ionized and substitution aluminum centers (Al3+).  相似文献   
145.
CuO–ZnO micro/nanoporous array‐films are synthesized by transferring a solution‐dipped self‐organized colloidal template onto a device substrate and sequent heat treatment. Their morphologies and structures are characterized by X‐ray diffraction, field‐emission scanning electron microscopy, transmission electron microscopy, and X‐ray photoelectron spectrum analysis. Based on the sensing measurement, it is found that the CuO–ZnO films prepared with the composition of [Cu2+]/[Zn2+]=0.005, 0.01, and 0.05 all show a nice sensitivity to 10 ppm H2S. Interestingly, three different zones exist in the patterns of gas responses versus H2S concentrations: a platform zone, a rapidly increasing zone, and a slowly increasing zone. Further experiments show that the hybrid CuO–ZnO porous film sensor exhibits shorter recovery time and better selectivity to H2S gas against other interfering gases at a concentration of 10 ppm. These new sensing properties may be due to a depletion layer induced by p–n junction between p‐type CuO and n‐type ZnO and high chemical activity of CuO to H2S. This work will provide a new construction route of ZnO‐based sensing materials, which can be used as H2S sensors with high performances.  相似文献   
146.
This Communication describes the use of CuInS2/ZnS quantum dots (QDs) as photocatalysts for the reductive deprotection of aryl sulfonyl-protected phenols. For a series of aryl sulfonates with electron-withdrawing substituents, the rate of deprotection for the corresponding phenyl aryl sulfonates increases with decreasing electrochemical potential for the two electron transfers within the catalytic cycle. The rate of deprotection for a substrate that contains a carboxylic acid, a known QD-binding group, is accelerated by more than a factor of ten from that expected from the electrochemical potential for the transformation, a result that suggests that formation of metastable electron donor–acceptor complexes provides a significant kinetic advantage. This deprotection method does not perturb the common NHBoc or toluenesulfonyl protecting groups and, as demonstrated with an estrone substrate, does not perturb proximate ketones, which are generally vulnerable to many chemical reduction methods used for this class of reactions.  相似文献   
147.
A new controlled aging methodology was developed for the synthesis of PbS colloidal quantum dots (QDs), applying larger PbS QDs as a starting material for smaller QDs by application of environmentally friendly oleic acid and oleylamine as reagents. This simple and mild procedure provides a possible strategy for tailoring the size-dependent properties of PbS QDs.  相似文献   
148.
A coumarin based probe for the efficient detection of hydrogen sulfide in aqueous medium is reported. The investigated coumarine-based derivative forms spherical nanoparticles in aqueous media. In presence of Pd2+, a metallosupramolecular coordination polymer is formed, which is accompanied by quenching of the coumarin emission at 390 nm. Its Pd2+ complex could be used as a probe for chemoselective detection of monohydrogensulfide (HS). Presence of HS leads to a'turn-on' fluorescence signal, resulting from decomplexation of Pd2+ from the metallosupramolecular probe. The probe was successfully applied for qualitative and quantitative detection of HS in different sources of water directly collected from sea, river, tap and laboratory drain water, as well as in growth media for aquatic species.  相似文献   
149.
This Communication describes the use of CuInS2/ZnS quantum dots (QDs) as photocatalysts for the reductive deprotection of aryl sulfonyl‐protected phenols. For a series of aryl sulfonates with electron‐withdrawing substituents, the rate of deprotection for the corresponding phenyl aryl sulfonates increases with decreasing electrochemical potential for the two electron transfers within the catalytic cycle. The rate of deprotection for a substrate that contains a carboxylic acid, a known QD‐binding group, is accelerated by more than a factor of ten from that expected from the electrochemical potential for the transformation, a result that suggests that formation of metastable electron donor–acceptor complexes provides a significant kinetic advantage. This deprotection method does not perturb the common NHBoc or toluenesulfonyl protecting groups and, as demonstrated with an estrone substrate, does not perturb proximate ketones, which are generally vulnerable to many chemical reduction methods used for this class of reactions.  相似文献   
150.
Fang  Yuanxing  Zheng  Yun  Fang  Tao  Chen  Yong  Zhu  Yaodong  Liang  Qing  Sheng  Hua  Li  Zhaosheng  Chen  Chuncheng  Wang  Xinchen 《中国科学:化学(英文版)》2020,63(2):149-181
Photocatalysis,which is the catalyzation of redox reactions via the use of energy obtained from light sources,is a topic that has garnered a lot of attention in recent years as a means of addressing the environmental and economic issues plaguing society today.Of particular interest are photosynthesis can potentially mimic a variety of vital reactions,many of which hold the key to develop sustainable energy economy.In light of this,many of the technological and procedural advancements that have recently occurred in the field are discussed in this review,namely those linked to:(1)photocatalysts made from metal oxides,nitride,and sulfides;(2)photocatalysis via polymeric carbon nitride(PCN);and(3)general advances and mechanistic insights related to TiO2-based catalysts.The challenges and opportunities that have arisen over the past few years are discussed in detail.Basic concepts and experimental procedures which could be useful for eventually overcoming the problems associated with photocatalysis are presented herein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号