首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28247篇
  免费   2402篇
  国内免费   1992篇
化学   10177篇
晶体学   153篇
力学   2100篇
综合类   154篇
数学   794篇
物理学   5145篇
综合类   14118篇
  2024年   162篇
  2023年   374篇
  2022年   710篇
  2021年   690篇
  2020年   828篇
  2019年   762篇
  2018年   751篇
  2017年   1030篇
  2016年   1110篇
  2015年   1257篇
  2014年   1534篇
  2013年   2114篇
  2012年   1832篇
  2011年   1830篇
  2010年   1411篇
  2009年   1477篇
  2008年   1277篇
  2007年   1715篇
  2006年   1511篇
  2005年   1344篇
  2004年   1180篇
  2003年   1015篇
  2002年   914篇
  2001年   751篇
  2000年   667篇
  1999年   617篇
  1998年   526篇
  1997年   475篇
  1996年   427篇
  1995年   400篇
  1994年   345篇
  1993年   292篇
  1992年   215篇
  1991年   187篇
  1990年   189篇
  1989年   167篇
  1988年   173篇
  1987年   91篇
  1986年   66篇
  1985年   47篇
  1984年   34篇
  1983年   13篇
  1982年   29篇
  1981年   26篇
  1980年   10篇
  1979年   24篇
  1976年   7篇
  1973年   5篇
  1972年   5篇
  1955年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
按照弹性理论,将平均压力作为体系的流体静力学压力,进而得出熔H和自由能G的新定义。通过对功的计算证明这是合理的.从而扩大了H和G的应用范围。  相似文献   
42.
大学生主要压力类型及其对策研究   总被引:2,自引:0,他引:2  
现时期大学生面临的主要压力类型及其心理压力源的探索 ;从社会、学校、个体本身等多个层面寻找解决大学生压力问题的途径和方法。  相似文献   
43.
本文利用变分方法推出了矩形管道中完全发展段层流流动的速度,继而讨论了矩形管道中的流量、沿程阻力系数和压力损失等。实验结果表明,本文的分析是可靠的。  相似文献   
44.
研究以水泥处理固体有机物时,有机物对水泥水化的影响。以膜流模式说明水份在水泥浆体内传输的现象。水膜存在半干之水泥浆体,其厚度小于100nm,膜流由离分压所驱动,而离分压来自分子间作用力。膜拟结果发现,水泥浆体内局部位置可用以进行水化之水量为Q=-Aslv/6vπ。当有机物添加在水泥浆体内时,会影响Hamaker常数,Aslv因此可能使膜流不稳定或完全抑制膜流,因而使水泥浆体内局部缺水,影响水化进行,造成成品强度降低,影响品质。  相似文献   
45.
Three novel functionalized polynorbornenes (PNB) with pendant dimethyl carboxylate group (carboxylates—acetate, propionate, and butyrate) are synthesized as a vinyl‐type with a palladium (II) catalyst in high yield. The effects of size of substitutents, molar ratio of monomer to catalyst, solvent polarity, reaction time, and temperature on the polymerization of exo‐norbornene dimethyl propionate were systematically investigated. The low molar ratio and temperature, as well as high polarity of solvent, and long reaction time, are favorable for the enhancement of the monomer conversion, especially, the solvent have an obvious effect on the catalyst activity. The resulting poly(cis‐norbornene‐exo‐2,3‐dimethyl carboxylates) (PNB‐dimethyl carboxylates) show good solubility in common organic solvent and high thermal stability up to 360 °C. The glass transition temperature was detected by DMA at 331, 324, and 318 °C for acetate, propionate, and butyrate, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3391–3399, 2007  相似文献   
46.
Improved reaction conditions for the preparation of poly(p‐phenylene sulfide) (PPS) directly from bis(4‐bromophenyl) disulfide (BBD) have been established. Heating BBD with magnesium metal afforded only a low molecular weight polymer. PPS with a melting temperature around 280 °C was obtained from BBD in the presence of sodium carbonate or zinc metal. The best results were obtained with the addition of a catalytic amount of KI to the zinc–BBD mixture. Polymers prepared by the above methods are semicrystalline and dissolve in 1‐chloronaphthalene and have properties comparable to commercial PPS. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 900–904, 2006  相似文献   
47.
A series of branched/crosslinked sulfonated polyimide (B/C‐SPI) membranes were prepared and evaluated as proton‐conducting ionomers based on the new concept of in situ crosslinking from sulfonated polyimide (SPI) oligomers and triamine monomers. Chemical branching and crosslinking in SPI oligomers with 1,3,5‐tris(4‐aminophenoxy)benzene as a crosslinker gave the polymer membranes very good water stability and mechanical properties under an accelerated aging treatment in water at 130 °C, despite their high ion‐exchange capacity (2.2–2.6 mequiv g?1). The resulting polymer electrolytes displayed high proton conductivities of 0.2–0.3 S cm?1 at 120 °C in water and reasonably high conductivities of 0.02–0.03 S cm?1 at 50% relative humidity. In a single H2/O2 fuel‐cell system at 90 °C, they exhibited high fuel‐cell performances comparable to those of Nafion 112. The B/C‐SPI membranes also displayed good performances in a direct methanol fuel cell with methanol concentrations as high as 50 wt % that were superior to those of Nafion 112. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3751–3762, 2006  相似文献   
48.
The factors affecting pattern‐forming properties in reaction development patterning were examined with polyarylates with various bisphenol moieties. The developability of the photosensitive polyarylates was dependent on the properties of the subtituent (R) in the bisphenol moieties. The development time decreased in the following order: R?C(CH3)2 > fluorenyl unit ? phenolphthalein unit > C(CF3)2 > SO2. This order agreed with that of the reactivity between the polyarylates and ethanolamine, and these orders can be explained by pKa of the bisphenol used to prepare the polyarylates. The development with NH2? R′? OH resulted in successful positive‐tone pattern formation. However, pattern formation with the developers containing NH2? R′? OCH3 was unsuccessful. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2694–2706, 2006  相似文献   
49.
Films of piezoelectric PVDF and P(VDF‐TrFE) were exposed to vacuum UV (115–300 nm VUV) and γ‐radiation to investigate how these two forms of radiation affect the chemical, morphological, and piezoelectric properties of the polymers. The extent of crosslinking was almost identical in both polymers after γ‐irradiation, but surprisingly, was significantly higher for the TrFE copolymer after VUV‐irradiation. Changes in the melting behavior were also more significant in the TrFE copolymer after VUV‐irradiation due to both surface and bulk crosslinking, compared with only surface crosslinking for the PVDF films. The piezoelectric properties (measured using d33 piezoelectric coefficients and D‐E hysteresis loops) were unchanged in the PVDF homopolymer, while the TrFE copolymer exhibited more narrow D‐E loops after exposure to either γ‐ or VUV‐radiation. The more severe damage to the TrFE copolymer in comparison with the PVDF homopolymer after VUV‐irradiation is explained by different energy deposition characteristics. The short wavelength, highly energetic photons are undoubtedly absorbed in the surface layers of both polymers, and we propose that while the longer wavelength components of the VUV‐radiation are absorbed by the bulk of the TrFE copolymer causing crosslinking, they are transmitted harmlessly in the PVDF homopolymer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3253–3264, 2006  相似文献   
50.
The solubility and diffusion coefficient of carbon dioxide in intermediate‐moisture starch–water mixtures were determined both experimentally and theoretically at elevated pressures up to 16 MPa at 50 °C. A high‐pressure decay sorption system was assembled to measure the equilibrium CO2 mass uptake by the starch–water system. The experimentally measured solubilities accounted for the estimated swollen volume by Sanchez–Lacombe equation of state (S‐L EOS) were found to increase almost linearly with pressure, yielding 4.0 g CO2/g starch–water system at 16 MPa. Moreover, CO2 solubilities above 5 MPa displayed a solubility increase, which was not contributed by the water fraction in the starch–water mixture. The solubilities, however, showed no dependence on the degree of gelatinization (DG) of starch. The diffusion coefficient of CO2 was found to increase with concentration of dissolved CO2, which is pressure‐dependent, and decrease with increasing DG in the range of 50–100%. A free‐volume‐based diffusion model proposed by Areerat was employed to predict the CO2 diffusivity in terms of pressure, temperature, and the concentration of dissolved CO2. S‐L EOS was once more used to determine the specific free volume of the mixture system. The predicted diffusion coefficients showed to correlate well with the measured values for all starch–water mixtures. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 607–621, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号