首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1139篇
  免费   61篇
  国内免费   59篇
化学   111篇
晶体学   4篇
力学   298篇
数学   46篇
物理学   138篇
综合类   662篇
  2024年   5篇
  2023年   9篇
  2022年   18篇
  2021年   24篇
  2020年   20篇
  2019年   19篇
  2018年   17篇
  2017年   29篇
  2016年   37篇
  2015年   37篇
  2014年   42篇
  2013年   57篇
  2012年   42篇
  2011年   55篇
  2010年   33篇
  2009年   51篇
  2008年   49篇
  2007年   64篇
  2006年   61篇
  2005年   45篇
  2004年   48篇
  2003年   47篇
  2002年   44篇
  2001年   44篇
  2000年   32篇
  1999年   30篇
  1998年   35篇
  1997年   44篇
  1996年   24篇
  1995年   32篇
  1994年   25篇
  1993年   13篇
  1992年   16篇
  1991年   24篇
  1990年   11篇
  1989年   16篇
  1988年   19篇
  1987年   10篇
  1986年   10篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1979年   2篇
  1971年   1篇
排序方式: 共有1259条查询结果,搜索用时 156 毫秒
121.
应用一个新的模型分析了几个扩展基础载荷试验,着重揭示前人无法解释的土体的蠕变行为。发现:使用的模型能够表征扩展基础载荷试验下土体的蠕变行为,且经模型变换后的应变时间曲线在双对数轴上是一条直线,其斜率为模型的指数n值,且n的取值与模型的参考量无关;载荷试验下土体蠕变行为的原始数据受到木制反力梁的自重蠕变、卸载-再加载、不等的蠕变观察时间等三个因素的干扰,当剔除这些干扰后得到的n值荷载水平曲线,显示n值与应力水平无关,n可以被看作表征土体的蠕变特性的一个指标。  相似文献   
122.
Abstract

A review is presented of a very general aspect of the response of all metals subjected to displacive irradiation. This aspect is referred to as «persistence» and describes the tendency of both radiation-induced microstructural evolution and the associated changes in material properties or dimensional stability to evolve to saturation states that resist further change upon continued irradiation. It is shown that new persistent states can develop on a longer time frame associated with the late-term loss of existing microstructural components or the gain of new components, especially when transmutation and/or segregation occurs. The persistent states are often dependent on the irradiation conditions, and if these are changed, the material usually adjusts to form the persistent state characteristic of the new conditions, with the memory of the former state often lost, and sometimes leaving no visible record of the former state in the new microstructure. Depending on the microstructural components involved, the transition toward the new persistent state can occur quickly or very slowly.  相似文献   
123.
124.
Even at ambient temperature or less, below their 0.2% proof stresses all hexagonal close-packed metals and alloys show creep behaviour because they have dislocation arrays lying on a single slip system with no tangled dislocation inside each grain. In this case, lattice dislocations move without obstacles and pile-up in front of a grain boundary. Then these dislocations must be accommodated at the grain boundary to continue creep deformation. Atomic force microscopy revealed the occurrence of grain boundary sliding (GBS) in the ambient-temperature creep region. Lattice rotation of 5° was observed near grain boundaries by electron backscatter diffraction pattern analyses. Because of an extra low apparent activation energy of 20 kJ/mol, conventional diffusion processes are not activated. To accommodate these piled-up dislocations without diffusion processes, lattice dislocations must be absorbed by grain boundaries through a slip-induced GBS mechanism.  相似文献   
125.
The deformation behavior of a Ti–5Al–2.5Sn (wt %) near-α alloy was investigated during in-situ deformation inside a scanning electron microscope. Tensile experiments were performed at 296?K and 728?K (≈0.4?T m), while tensile-creep experiments were performed at 728?K and 763?K. Active deformation systems were identified using electron backscattered diffraction-based slip trace analysis. Both basal and prismatic slip systems were active during the tensile experiments. Basal slip was observed for grains clustered around high Schmid factor orientations, while prismatic slip exhibited less dependence on the crystallographic orientation. The tension-creep experiments revealed less slip but more development of grain boundary ledges than in the higher strain rate tensile experiments. Some of the grain boundary ledges evolved into grain boundary cracks, and grain boundaries oriented nearly perpendicular to the tensile axis formed ledges earlier in the deformation process. Grain boundaries with high misorientations also tended to form ledges earlier than those with lower misorientations. Most of the grain boundary cracks formed in association with grains displaying hard orientations, where the c-axis was nearly perpendicular to the tensile direction. For the tension-creep experiments, pronounced basal slip was observed in the lower-stress creep regime and the activity of prismatic slip increased with increasing creep stress and temperature.  相似文献   
126.
Abstract

A physically based reaction-diffusion model is implemented in the visco-plastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. The reaction-diffusion model accounts for the defects produced by the cascade of displaced atoms, their diffusion to lattice sinks and the contribution to crystallographic strain at the level of single crystals. The VPSC framework accounts for intergranular interactions and irradiation creep, and calculates the strain in the polycrystalline ensemble. A novel scheme is proposed to model the simultaneous evolution of both, number density and radius, of irradiation-induced dislocation loops directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behaviour of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture and external stress on the coupled irradiation growth and creep behaviour are also studied and compared with available experimental data.  相似文献   
127.
The tension and tensile-creep deformation behaviours of a fully-α phase commercially pure (CP) Ti and a near-α Ti–5Al–2.5Sn(wt.%) alloy deformed in situ inside a scanning electron microscope were compared. Tensile tests were performed at 296 and 728?K, while tensile-creep tests were performed at 728?K. The yield stress of CP Ti decreased dramatically with increasing temperature. In contrast, temperature had much smaller effect on the yield stress of Ti–5Al–2.5Sn(wt.%). Electron backscattered diffraction was performed both before and after the deformation, and slip trace analysis was used to determine the active slip and twinning systems, as well as the associated global stress state Schmid factors. In tension tests of CP Ti, prismatic slip was the most likely slip system to be activated when the Schmid factor exceeded 0.4. Prismatic slip was observed over the largest Schmid factor range, indicating that the local stress tensor varies significantly from the global stress state of uniaxial tension. The basal slip activity in Ti–5Al–2.5Sn(wt.%) was observed in a larger faction of grains than in CP Ti. Pyramidal ?c?+?a? slip was more prevalent in CP Ti. Although twinning was an active deformation mode in tension tests of the CP Ti, it was rare in Ti–5Al–2.5Sn(wt.%). During creep, dislocation slip was the primary apparent deformation mechanism in CP Ti, while evidence for dislocation slip was much less apparent in Ti–5Al–2.5Sn(wt.%), where grain boundary sliding was dominant. A robust statistical analysis was carried out to assess the significance of the comparative activity of the different slip systems under the variety of experimental conditions examined.  相似文献   
128.
Udimet alloy 188 was subjected to grain-boundary engineering involving thermomechanical processing in an attempt to improve the creep performance and determine the effects on creep deformation processes. The as-received sheet was cold-rolled to either 10, 25 or 35% reduction per pass followed by a solution treatment at 1191°C for 1 h plus air cooling. This sequence was repeated four times and the resultant microstructure and grain-boundary character distribution were described using electron backscatter diffraction. The fraction of general high-angle grain boundaries tended to increase with increased cold rolling. The 10 and 25% cold-rolled materials exhibited lower creep rates than the 35% cold-rolled material. The measured creep stress exponents and activation energies suggested that dislocation creep with lattice self-diffusion was dominant at 760°C for stresses ranging between 100 and 220 MPa. A transition in the creep exponent below the applied stresses of 100 MPa indicated that a different secondary creep mechanism was rate-controlling at low stresses. A significant amount of grain-boundary cracking was observed both on the surface and subsurface of deformed samples, but surface cracks were greater in number and size than those within the bulk. The cracking behaviour was similar in both vacuum and air environments, indicating that grain-boundary cracking was not caused by environment. To assess the mechanisms of crack nucleation, in situ scanning electron microscopy was performed during elevated-temperature (T ≤ 760°C) tensile-creep deformation. Sequential secondary electron imaging and electron backscatter diffraction orientation mapping were performed in situ to allow the evolution of crack nucleation and linkage to be followed. Cracking occurred preferentially along general high-angle grain boundaries and less than 15% of the cracks were found on low-angle grain boundaries and coincident site lattice boundaries. A fracture initiation parameter analysis was performed to identify the role of slip system interactions at the boundaries and their impact on crack nucleation. The parameter was successful in separating the population of intact and cracked general high-angle boundaries at lower levels of strain, but not after crack coalescence dominated the fracture process. The findings of this work have significant implications regarding grain-boundary engineering of this alloy and potentially for other alloy systems.  相似文献   
129.
We report synthesis, structure/micro-structure, resistivity under magnetic field [ρ(T)H], Raman spectra, thermoelectric power S(T), thermal conductivity κ(T), and magnetization of ambient pressure argon annealed polycrystalline bulk samples of MgB2, processed under identical conditions. The compound crystallizes in hexagonal structure with space group P6/mmm. Transmission electron microscopy (TEM) reveals electron micrographs showing various types of defect features along with the presence of 3–4 nm thick amorphous layers forming the grain boundaries of otherwise crystalline MgB2. Raman spectra of the compound at room temperature exhibited characteristic phonon peak at 600 cm-1. Superconductivity is observed at 37.2 K by magnetic susceptibility χ(T), resistivity ρ(T), thermoelectric power S(T), and thermal conductivity κ(T) measurements. The power law fitting of ρ(T) give rise to Debye temperature (ΘD) at 1400 K which is found consistent with the theoretical fitting of S(T), exhibiting Θ D of 1410 K and carrier density of 3.81 × 1028/m3. Thermal conductivity κ(T) shows a jump at 38 K, i.e., at Tc, which was missing in some earlier reports. Critical current density (Jc) of up to 105 A/cm2 in 1–2 T (Tesla) fields at temperatures (T) of up to 10 K is seen from magnetization measurements. The irreversibility field, defined as the field related to merging of M(H) loops is found to be 78, 68 and 42 kOe at 4, 10 and 20 K respectively. The superconducting performance parameters viz. irreversibility field (Hirr) and critical current density Jc(H) of the studied MgB2 are improved profoundly with addition of nano-SiC and nano-diamond. The physical property parameters measured for polycrystalline MgB2 are compared with earlier reports and a consolidated insight of various physical properties is presented.  相似文献   
130.
The ability to control material properties in space and time for functionally graded viscoelastic materials makes them an asset where they can be adapted to different design requirements. The continuous microstructure makes them advantageous over conventional composite materials. Functionally graded porous structures have the added advantage over conventional functionally graded materials of offering a significant weight reduction compared to a minor drop in strength. Functionally graded porous structures of acrylonitrile butadiene styrene (ABS) had been fabricated with a solid‐state constrained foaming process. Correlating the microstructure to material properties requires a deterministic analysis of the cellular structure. This is accomplished by analyzing the scanning electron microscopy images with a locally adaptive image threshold technique based on variational energy minimization. This characterization technique of the cellular morphology is analyst independent and works very well for porous structures. Inferences are drawn from the effect of processing on microstructure and then correlated to creep strain and creep compliance. Creep is strongly correlated to porosity and pore sizes but more associated to the size than to porosity. The results show the potential of controlling the cellular morphology and hence tailoring creep strain/compliance of ABS to some desired values. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 795–803  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号