首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   33篇
  国内免费   8篇
化学   232篇
物理学   3篇
综合类   14篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   12篇
  2019年   11篇
  2018年   4篇
  2017年   6篇
  2016年   15篇
  2015年   8篇
  2014年   10篇
  2013年   11篇
  2012年   8篇
  2011年   10篇
  2010年   7篇
  2009年   8篇
  2008年   16篇
  2007年   16篇
  2006年   11篇
  2005年   19篇
  2004年   8篇
  2003年   16篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1986年   1篇
  1984年   1篇
  1974年   1篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
11.
Perhydrolysis of a sterically congested multifunctional epoxide was achieved in ethereal H2O2 with the aid of a recently developed Mo catalyst. The resulting hydroperoxide cyclized to give a 1,2,4‐trioxane, which could be readily elaborated into qinghaosu and a range of novel analogues. Some of the compounds with two such trioxane moieties showed in vitro antimalarial activity comparable to or even better than that of artesunate or chloroquine.  相似文献   
12.
Based on a mechanistic study, we have discovered a Brønsted acid catalyzed formation of ketone radicals. This is believed to proceed via thermally labile alkenyl peroxides formed in situ from ketones and hydroperoxides. The discovery could be utilized to develop a multicomponent radical addition of unactivated ketones and tert‐butyl hydroperoxide to olefins. The resulting γ‐peroxyketones are synthetically useful intermediates that can be further transformed into 1,4‐diketones, homoaldol products, and alkyl ketones. A one‐pot reaction yielding a pharmaceutically active pyrrole is also described.  相似文献   
13.
Birefringent materials, which can modulate the polarization of light, are almost exclusively limited to oxides. Peroxides have long been overlooked as birefringent materials, because they are usually not stable in air. Now, the first peroxide birefringent material Rb2VO(O2)2F is reported, the single crystals of which keep transparency after being exposed in the air for two weeks. Interestingly, Rb2VO(O2)2F does not feature an optimal anisotropic structure, but its birefringence (Δn=0.189 at 546 nm) exceeds those of the majority of oxides. According to the first‐principles calculations, this exceptional birefringence should be attributed to the strong electronic interactions between localized π orbital of O22? anions and V5+ 3d orbitals, which may be also favorable to the stability in the air for Rb2VO(O2)2F. These findings distinguish peroxides as a brand‐new class of birefringent materials that may possess birefringence superior to the traditional oxides.  相似文献   
14.
A wide range of uranyl–peroxide nanocapsules have been synthesized using very simple reactants in basic media; however, little is known about the process to form these species. We have performed a density functional theory study of the speciation of the uranyl ions under different experimental conditions and explored the formation of dimeric species via a ligand exchange mechanism. We shed some light onto the importance of the excess of peroxide and alkali counterions as a thermodynamic driving force towards the formation of larger uranyl–peroxide species.  相似文献   
15.
The introduction of UV-Vis absorption spectrophotometry to the study of radiation chemistry of polymers has opened the possibility to investigate even very opaque samples. The virgin powder polypropylene, as obtained from the industrial production line, shows after irradiation unstable products of radiolysis. Until now they were investigated mainly by EPR method. Optical absorption spectra (by diffuse reflection spectrophotometry) contribute to better identification and study of changes in time, temperature and diffusion of reactive gases. Studying the formation of stable compounds, which do not produce EPR signal, we are able to examine these species on the basis of their electronic spectra. The most important results concern the peroxides in irradiated polypropylene.  相似文献   
16.
17.
18.
Imidazolium‐based ionic liquids that contain perrhenate anions are very efficient reaction media for the epoxidation of olefins with H2O2 as an oxidant, thus affording cyclooctene in almost quantitative yields. The mechanism of this reaction does not follow the usual pathway through peroxo complexes, as is the case with long‐known molecular transition‐metal catalysts. By using in situ Raman, FTIR, and NMR spectroscopy and DFT calculations, we have shown that the formation of hydrogen bonds between the oxidant and perrhenate activates the oxidant, thereby leading to the transfer of an oxygen atom onto the olefin demonstrating the special features of an ionic liquid as a reaction environment. The influence of the imidazolium cation and the oxidant (aqueous H2O2, urea hydrogen peroxide, and tert‐butyl hydrogen peroxide) on the efficiency of the epoxidation of cis‐cyclooctene were examined. Other olefinic substrates were also used in this study and they exhibited good yields of the corresponding epoxides. This report shows the potential of using simple complexes or salts for the activation of hydrogen peroxide, owing to the interactions between the solvent medium and the active complex.  相似文献   
19.
20.
Treatment of [Li(H2Ga{CH(SiMe3)2}2)] ? 2 OEt2 ( 1? 2 OEt2) with two equivalents of tert‐butyl hydrogen peroxide, H‐O‐O‐CMe3, afforded the organogallium peroxide [({(Me3Si)2HC}2Ga(OH)(OOCMe3)Li)2] ( 3 ), which possesses oxidizing peroxo groups in close proximity to reducing Ga? C bonds. The lithium atoms of the dimeric formula units are coordinated by both oxygen atoms of the peroxides and by two hydroxo groups. The cleavage of the Ga? C bond was not observed, even when an excess of H‐O‐O‐CMe3 was applied. Instead, the adduct [{(Me3Si)2HC}2Ga(OH)(OOCMe3)2Li2(HOOCMe3)] ( 4 ) was isolated, which has an intact H‐O‐O‐CMe3 molecule terminally attached to lithium. A similar structural motif was found for the compound [(LiOOCMe3)2(HOOCMe3)2] ( 5 ). The trihydrido gallanate [Li(H3Ga? {CH(SiMe3)2})] ? OEt2 ( 2 ) yielded the unique peroxide [({(Me3Si)2HC}? Ga(H)(OOCMe3)2Li)2] ( 6 ) under similar conditions that possesses Ga? C and even more reactive Ga? H bonds beside peroxo groups. It decomposed at room temperature by the insertion of oxygen atoms into the Ga? H bonds and the formation of [({(Me3Si)2HC}? Ga(OH)(OCMe3)(OOCMe3)Li)2] ( 7 ), which was isolated in a low yield. Further decomposition gave the complete degradation of all peroxo groups with the formation of a relatively complicated Li4Ga4O8 cage ( 8 ).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号