首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   966篇
  免费   319篇
  国内免费   237篇
化学   887篇
晶体学   45篇
综合类   9篇
物理学   392篇
综合类   189篇
  2024年   18篇
  2023年   34篇
  2022年   92篇
  2021年   104篇
  2020年   125篇
  2019年   73篇
  2018年   77篇
  2017年   56篇
  2016年   84篇
  2015年   55篇
  2014年   37篇
  2013年   66篇
  2012年   45篇
  2011年   55篇
  2010年   49篇
  2009年   64篇
  2008年   55篇
  2007年   57篇
  2006年   56篇
  2005年   58篇
  2004年   44篇
  2003年   42篇
  2002年   29篇
  2001年   27篇
  2000年   44篇
  1999年   9篇
  1998年   10篇
  1997年   15篇
  1996年   12篇
  1995年   8篇
  1994年   10篇
  1993年   3篇
  1992年   1篇
  1991年   4篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
排序方式: 共有1522条查询结果,搜索用时 11 毫秒
41.
Quasi-two-dimensional (2D) perovskites are promising candidates for light generation owing to their high radiative rates. However, strong exciton–phonon interactions caused by mechanical softening of the surface act as a bottleneck in improving their suitability for a wide range of lighting and display applications. Moreover, it is not easily available to tune the phonon interactions in bulk films. Here, we adopt bottom-up fabricated blue emissive perovskite nanoplatelets (NPLs) as model systems to elucidate and as well as tune the phonon interactions via engineering of binary NPL solids. By optimizing component domains, the phonon coupling strength can be reduced by a factor of 2 driven by the delocalization of 2D excitons in out-of-plane orientations. It shows the picosecond energy transfer originated from the Förster resonance energy transfer (FRET) efficiently competes with the exciton–phonon interactions in the binary system.  相似文献   
42.
Solid electrolytes, such as perovskite Li3xLa2/1−xTiO3, LixLa(1−x)/3NbO3 and garnet Li7La3Zr2O12 ceramic oxides, have attracted extensive attention in lithium-ion battery research due to their good chemical stability and the improvability of their ionic conductivity with great potential in solid electrolyte battery applications. These solid oxides eliminate safety issues and cycling instability, which are common challenges in the current commercial lithium-ion batteries based on organic liquid electrolytes. However, in practical applications, structural disorders such as point defects and grain boundaries play a dominating role in the ionic transport of these solid electrolytes, where defect engineering to tailor or improve the ionic conductive property is still seldom reported. Here, we demonstrate a defect engineering approach to alter the ionic conductive channels in LixLa(1−x)/3NbO3 (x = 0.1~0.13) electrolytes based on the rearrangements of La sites through a quenching process. The changes in the occupancy and interstitial defects of La ions lead to anisotropic modulation of ionic conductivity with the increase in quenching temperatures. Our trial in this work on the defect engineering of quenched electrolytes will offer opportunities to optimize ionic conductivity and benefit the solid electrolyte battery applications.  相似文献   
43.
采用柠檬酸法制备了LaMnO3、LaFeO3、La0.5Sr0.5MnO3、La0.5Sr0.5FeO3,通过负载纳米Pt合成了Pt负载钙钛石催化剂,XRD与IR数据表明合成的催化剂具有钙钛石相,TEM数据表明合成的纳米Pt粒径为~3 nm,均匀分散在钙钛石上。在CO氧化反应中,发现钙钛石的氧化-还原性能是影响其活性的重要因素,因而,Mn系钙钛石表现出较高的CO氧化活性。负载纳米Pt后,Fe系钙钛石则显示出更优异的CO氧化活性,CO完全转化的温度从350 ℃降至120 ℃。吸附实验表明钙钛石上氧空位对促进O2的吸附起着非常重要的作用,也是影响CO低温氧化的重要因素之一。  相似文献   
44.
The compound La2Ca2MnO6(O2) has been synthesized from La2Ca2MnO7 heated at 1123 K under high pressure (4 GPa) with KClO3 as oxygen source. The crystal structure has been refined from X-ray powder data in the space group. The unit-cell parameters are a=5.6335(2) Å and c=17.4879(8) Å. Perpendicular to the c-axis, the structure is built up by the periodic stacking of two close packed [LaO3] layers separated by a layer of composition [Ca2O2] containing (O2)2− peroxide ions. This oxide belongs to the family of compounds formulated as [A2O2−δ][AnBn−1O3n] for n=2 and δ=0. It is the first member of the series where the thickness of the perovskite slab corresponds to one [BO6] (B=Mn) octahedron. The structural relationships with La2Ca2MnO7 are discussed and the magnetic properties show that in both phases manganese is tetravalent.  相似文献   
45.
New phases Sr8ARe3Cu4O24 (A=Sr,Ca) were discovered under high-pressure/high-temperature condition. X-ray powder diffraction and electron diffraction studies for these phases indicated that they have an ordered perovskite-type structure with cubic lattices of ∼8 Å. They showed ferromagnetism at room temperature when they were synthesized under high-oxygen-pressure condition. The Ca-containing phase has a very high Tc of 440 K with a spontaneous magnetization of ∼1 μB/f.u.  相似文献   
46.
近年来,钙钛矿太阳电池的光电转换效率取得了爆发式增长,这与电池中钙钛矿薄膜的制备工艺和材料组分密切相关.关于钙钛矿薄膜的制备方法,相关的研究报道及综述较多,然而钙钛矿材料组分调控方面的研究梳理工作相对缺乏.本综述总结了近年来不同组分体系钙钛矿材料的研究进展,包括有机无机铅卤钙钛矿、全无机铅卤钙钛矿、少铅钙钛矿以及无铅钙钛矿.重点介绍了不同体系中具有代表性的材料组分及其对器件性能的影响,旨在梳理通过组分调控提高钙钛矿电池的效率及稳定性的研究思路,最终实现商业化应用.  相似文献   
47.
An efficient solution-processable route employing Pb(Ac)2 as lead source and anti-solvent treatment to achieve fully covered and homogenous perovskite films is reported.  相似文献   
48.
The crystallographic defects inevitably incur during the solution processed organic‐inorganic hybrid perovskite film, especially at surface and the grain boundaries (GBs) of perovskite film, which can further result in the reduced cell performance and stability of perovskite solar cells (PSCs). Here, a simple defect passivation method was employed by treating perovskite precursor film with a hydrophobic tetra‐ammonium zinc phthalocyanine (ZnPc). The results demonstrated that a 2D‐3D graded perovskite interface with a capping layer of 2D (ZnPc)0.5MAn ? 1PbnI3n + 1 perovskite together with 3D MAPbI3 perovskite was successfully constructed on the top of 3D perovskite layer. This situation realized the efficient GBs passivation, thus reducing the defects in GBs. As expected, the corresponding PSCs with modified perovskite revealed an improved cell performance. The best efficiency reached 19.6%. Especially, the significantly enhanced long‐term stability of the responding PSCs against humidity and heating was remarkably achieved. Such a strategy in this work affords an efficient method to improve the stability of PSCs and thus probably brings the PSCs closer to practical commercialization.  相似文献   
49.
Overall kinetic studies on the oxidative coupling of methane, OCM, have been conducted in a tubular fixed bed reactor, using perovskite titanate as the reaction catalyst. The appropriate operating conditions were found to be: temperature 750-775 ℃, total feed flow rate of 160 ml/min, CH4/O2 ratio of 2 and GHSV of 100 min-1. Under these conditions, C2 yield of 28% was achieved. Correlations of the kinetic data have been performed with lumped rate equations for C2 and COx formation as functions of temperature, O2 and CH4 partial pressures. Six models have been selected among the common lumped kinetic models. The selected models have been regressed with the experimental data which were obtained from the Catatest system by genetic algorithm in order to obtain optimized parameters. The kinetic coefficients in the overall reactions were optimized by different numerical optimization methods such as: the Levenberg-Marquardt and genetic algorithms and the results were compared with one another. It has been found that the Santamaria model is in good agreement with the experimental data. The Arrhenius parameters of this model have been obtained by linear regression. It should be noted that the Marquardt algorithm is sensitive to the first guesses and there is possibility to trap in the relative minimum.  相似文献   
50.
The enthalpy of oxidation of SrFe1-xCoxO3-d with x=0.33 and 0.67 has been determined by adiabatic calorimetry; average values for x=0.33 and 0.67 are -67±11 and -49.5±9 kJ (mol O2)-1. These data and the previously reported value for SrFeO3-d suggest that the enthalpy of oxidation for pure (perovskite-type) SrCoO3-d is close to zero. Earlier reported composition - partial pressure data for SrFe0.67Co0.33O3-d are reproduced when preferential oxidation of iron is assumed for low partial pressures of oxygen. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号