首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   37篇
  国内免费   10篇
化学   112篇
力学   5篇
数学   6篇
物理学   2篇
综合类   6篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   19篇
  2020年   22篇
  2019年   11篇
  2018年   12篇
  2017年   4篇
  2016年   13篇
  2015年   5篇
  2014年   13篇
  2013年   9篇
  2012年   7篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2006年   1篇
排序方式: 共有131条查询结果,搜索用时 203 毫秒
21.
DNA origami nanostructures (DONs) are promising substrates for the single-molecule investigation of biomolecular reactions and dynamics by in situ atomic force microscopy (AFM). For this, they are typically immobilized on mica substrates by adding millimolar concentrations of Mg2+ ions to the sample solution, which enable the adsorption of the negatively charged DONs at the like-charged mica surface. These non-physiological Mg2+ concentrations, however, present a serious limitation in such experiments as they may interfere with the reactions and processes under investigation. Therefore, we here evaluate three approaches to efficiently immobilize DONs at mica surfaces under essentially Mg2+-free conditions. These approaches rely on the pre-adsorption of different multivalent cations, i.e., Ni2+, poly-l-lysine (PLL), and spermidine (Spdn). DON adsorption is studied in phosphate-buffered saline (PBS) and pure water. In general, Ni2+ shows the worst performance with heavily deformed DONs. For 2D DON triangles, adsorption at PLL- and in particular Spdn-modified mica may outperform even Mg2+-mediated adsorption in terms of surface coverage, depending on the employed solution. For 3D six-helix bundles, less pronounced differences between the individual strategies are observed. Our results provide some general guidance for the immobilization of DONs at mica surfaces under Mg2+-free conditions and may aid future in situ AFM studies.  相似文献   
22.
DNA具有非凡的分子识别性能和显著的结构特征,这使得它在材料的纳米级调控方面具有独特的优越性,在许多领域也展现出广阔的应用前景。本文从模块化DNA自组装和DNA折纸术两个方面综述了近些年DNA纳米技术,包括近年来DNA纳米技术中比较新型的组装方法;并从DNA纳米结构作为模板定位纳米粒子和蛋白以及用于生物医药等方面介绍了DNA纳米技术的应用;同时,对DNA纳米技术发展及应用进行了展望。  相似文献   
23.
A toric origami manifold, introduced by Cannas da Silva, Guillemin and Pires, is a generalization of a toric symplectic manifold. For a toric symplectic manifold, its equivariant Chern classes can be described in terms of the corresponding Delzant polytope and the stabilization of its tangent bundle splits as a direct sum of complex line bundles. But in general a toric origami manifold is not simply connected, so the algebraic topology of a toric origami manifold is more difficult than a toric symplectic manifold. In this paper they give an explicit formula of the equivariant Chern classes of an oriented toric origami manifold in terms of the corresponding origami template. Furthermore, they prove the stabilization of the tangent bundle of an oriented toric origami manifold also splits as a direct sum of complex line bundles.  相似文献   
24.
With silicon-based microelectronic technology pushed to its limit,scientists hunt to exploit biomolecules to power the bio-computer as substitutes.As a typical biomolecule,DNA now has been employed as a tool to create computing systems because of its superior parallel computing ability and outstanding data storage capability.However,the key challenges in this area lie in the human intervention during the computation process and the lack of platforms for central processor.DNA nanotechnology has created hundreds of complex and hierarchical DNA nanostructures with highly controllable motions by exploiting the unparalleled self-recognition properties of DNA molecule.These DNA nanostructures can provide platforms for central processor and reduce the human intervention during the computation process,which can offer unprecedented opportunities for biocomputing.In this review,recent advances in DNA nanotechnology are briefly summarized and the newly emerging concept of biocomputing with DNA nanostructures is introduced.  相似文献   
25.
DNA origami structures have great potential as functional platforms in various biomedical applications. Many applications, however, are incompatible with the high Mg2+ concentrations commonly believed to be a prerequisite for maintaining DNA origami integrity. Herein, we investigate DNA origami stability in low‐Mg2+ buffers. DNA origami stability is found to crucially depend on the availability of residual Mg2+ ions for screening electrostatic repulsion. The presence of EDTA and phosphate ions may thus facilitate DNA origami denaturation by displacing Mg2+ ions from the DNA backbone and reducing the strength of the Mg2+–DNA interaction, respectively. Most remarkably, these buffer dependencies are affected by DNA origami superstructure. However, by rationally selecting buffer components and considering superstructure‐dependent effects, the structural integrity of a given DNA origami nanostructure can be maintained in conventional buffers even at Mg2+ concentrations in the low‐micromolar range.  相似文献   
26.
Protein inclusions in the membranes of living cells interact via the deformations they impose on that membrane. Such membrane-mediated interactions lead to sorting and self-assembly of the inclusions, as well as to membrane remodelling, crucial for many biological processes. For the past decades, theory, numerical calculations and experiments have been using simplified models for proteins to gain quantitative insights into their behaviour. Despite challenges arising from nonlinearities in the equations, the multiple length scales involved and the nonadditive nature of the interactions, recent progress now enables for the first time a direct comparison between theoretical and numerical predictions and experiments. We review the current knowledge on the biologically most relevant case, inclusions on lipid membranes with a closed surface and discuss challenges and opportunities for further progress.  相似文献   
27.
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号