首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12264篇
  免费   822篇
  国内免费   793篇
化学   1615篇
晶体学   40篇
力学   1214篇
综合类   122篇
数学   1118篇
物理学   2090篇
综合类   7680篇
  2024年   29篇
  2023年   115篇
  2022年   253篇
  2021年   258篇
  2020年   249篇
  2019年   258篇
  2018年   222篇
  2017年   301篇
  2016年   350篇
  2015年   370篇
  2014年   568篇
  2013年   615篇
  2012年   761篇
  2011年   737篇
  2010年   559篇
  2009年   668篇
  2008年   697篇
  2007年   783篇
  2006年   755篇
  2005年   628篇
  2004年   569篇
  2003年   541篇
  2002年   489篇
  2001年   432篇
  2000年   382篇
  1999年   318篇
  1998年   261篇
  1997年   234篇
  1996年   219篇
  1995年   190篇
  1994年   160篇
  1993年   152篇
  1992年   132篇
  1991年   138篇
  1990年   113篇
  1989年   112篇
  1988年   78篇
  1987年   58篇
  1986年   45篇
  1985年   13篇
  1984年   13篇
  1983年   7篇
  1982年   6篇
  1981年   17篇
  1980年   3篇
  1979年   8篇
  1978年   6篇
  1975年   2篇
  1957年   1篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
In this paper, we first reduce the problem of finding a minimum parity (g,f)-factor of a graph G into the problem of finding a minimum perfect matching in a weighted simple graph G*. Using the structure of G*, a necessary and sufficient condition for the existence of an even factor is derived. This paper was accomplished while the second author was visiting the Center for Combinatorics, Nankai University. The research is supported by NSFC  相似文献   
22.
用边界积分方法分析了表面裂纹在接触载荷作用下的张开位移和应力强度因子,该方法将埋在无穷大弹性介质中裂纹模拟为连续分布的位错环,根据两个位错环之间的相互作用能可以得到弹性体的应变能,对弹性体的势能取极值,可以得到关于裂纹张开位移的边界积分方程,通过把半空间的边界模拟成一个包含在无穷大弹性介质中大裂纹,该方法能用已有的边界积分方法很好的处理具有任意表面形状的表面裂纹,文中算例分析了不同倾角的表面裂纹在法向和切向接触载荷作用下,裂纹尖端的应力强度因子,其结果对于分析路面表面裂纹的扩展具有重要意义。  相似文献   
23.
A detailed study of the generalized M2 factor of hard-edged diffracted beams based on the truncated second-order moments method, asymptotic analysis and self-convergent beam width approach is performed. The dependence of the generalized M2 factor on the parameters characterizing the spatial profile, and beam truncation, etc. is analyzed.  相似文献   
24.
25.
The bias dependent interface charge is considered as the origin of the observed non-ideality in current–voltage and capacitance–voltage characteristics. Using the simplified model for the interface electronic structure based on defects interacting with the continuum of interface states, the microscopic origin of empirical parameters describing the bias dependent interface charge function is investigated. The results show that in non-ideal metal–semiconductor contacts the interface charge function depends on the interface disorder parameter, density of defects, barrier pinning parameter and the effective gap center. The theoretical predictions are tested against several sets of published experimental data on bias dependent ideality factor and excess capacitance in various metal–semicoductor systems.  相似文献   
26.
In this paper, we solve the steady-state form of the Boltzmann transport equation in homogeneous and heterogeneous tissue-like media with a finite element-spherical harmonics (FE-PN) radiation transport method. We compare FE-transport and diffusion solutions in terms of the ratio of absorption to reduced scattering coefficient, (μa/μs′) and the anisotropy factor g. Two different scattering phase function formulas are employed to model anisotropic scattering in the slab media with high g-value. Influence of void-like heterogeneities, and of their boundaries with the surrounding medium on the transport of photons are also examined.  相似文献   
27.
The paper addresses the problem of a semi-infinite plane crack along the interface between two isotropic half-spaces. Two methods of solution have been considered in the past: Lazarus and Leblond [1998a. Three-dimensional crack-face weight functions for the semi-infinite interface crack-I: variation of the stress intensity factors due to some small perturbation of the crack front. J. Mech. Phys. Solids 46, 489-511, 1998b. Three-dimensional crack-face weight functions for the semi-infinite interface crack-II: integrodifferential equations on the weight functions and resolution J. Mech. Phys. Solids 46, 513-536] applied the “special” method by Bueckner [1987. Weight functions and fundamental fields for the penny-shaped and the half-plane crack in three space. Int. J. Solids Struct. 23, 57-93] and found the expression of the variation of the stress intensity factors for a wavy crack without solving the complete elasticity problem; their solution is expressed in terms of the physical variables, and it involves five constants whose analytical representation was unknown; on the other hand, the “general” solution to the problem has been recently addressed by Bercial-Velez et al. [2005. High-order asymptotics and perturbation problems for 3D interfacial cracks. J. Mech. Phys. Solids 53, 1128-1162], using a Wiener-Hopf analysis and singular asymptotics near the crack front.The main goal of the present paper is to complete the solution to the problem by providing the connection between the two methods. This is done by constructing an integral representation for Lazarus-Leblond's weight functions and by deriving the closed form representations of Lazarus-Leblond's constants.  相似文献   
28.
综合运用国内外多种测量量表对大学生的心理素质进行诊断与测试 ,并应用多元统计分析方法对其心理素质结构主因素进行定量分析 ,在此基础上建立了心理素质诊断模型 ,并运用该模型对实际问题进行了分析 .  相似文献   
29.
30.
The miniaturized calorimetric devices furnish a reduced working flat surface and permits measurements with extremely low-mass quantities. The experimental sensitivity shows relevant position dependence with x-y surface coordinates and with z-distance. The device identification is realized via a 2-D model based in Fourier general equation. Using the Marquardt method the experimental flat surface device can be identified and the fitted parameters used to simulate the behavior of the experimental system. From the model, the effects of several dissipation configurations can be evaluated. Also, via the RC-analogy, a way to 3-D experimental devices is roughly described. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号