首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   802篇
  免费   63篇
  国内免费   40篇
化学   211篇
晶体学   4篇
力学   87篇
综合类   2篇
数学   97篇
物理学   100篇
综合类   404篇
  2024年   6篇
  2023年   19篇
  2022年   30篇
  2021年   24篇
  2020年   32篇
  2019年   27篇
  2018年   19篇
  2017年   39篇
  2016年   36篇
  2015年   27篇
  2014年   34篇
  2013年   30篇
  2012年   41篇
  2011年   43篇
  2010年   34篇
  2009年   39篇
  2008年   43篇
  2007年   32篇
  2006年   50篇
  2005年   32篇
  2004年   41篇
  2003年   22篇
  2002年   32篇
  2001年   25篇
  2000年   14篇
  1999年   25篇
  1998年   17篇
  1997年   15篇
  1996年   11篇
  1995年   10篇
  1994年   12篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1986年   6篇
  1985年   1篇
  1979年   1篇
  1974年   1篇
  1971年   1篇
  1957年   1篇
排序方式: 共有905条查询结果,搜索用时 11 毫秒
91.
The microenvironments of a leucine‐based organogel are probed by monitoring the fluorescence behavior of coumarin 153 (C153) and 4‐aminophthalimide (AP). The steady‐state data reveals distinctly different locations of the two molecules in the gel. Whereas AP resides close to the hydroxyl moieties of the gelator and engages in hydrogen‐bonding interactions, C153 is found in bulk‐toluene‐like regions. In contrast to C153, AP exhibits excitation‐wavelength‐dependent emission, indicating that the environments of the hydrogen‐bonded AP molecules are not all identical. A two‐component fluorescence decay of AP in gel, unlike C153, supports this model. A time‐resolved fluorescence anisotropy study of the rotational motion of the molecules also reveals the strong association of only AP with the gelator. That AP influences the critical gelation concentration implies its direct involvement in the gel‐formation process. The results highlight the importance of guest–gelator interactions in gels containing guest molecules.  相似文献   
92.
The dynamic adhesion behavior of micrometer-scale silica particles is investigated numerically for a low Reynolds number shear flow over a planar collecting wall with randomly distributed electrostatic heterogeneity at the 10-nanometer scale. The hydrodynamic forces and torques on a particle are coupled to spatially varying colloidal interactions between the particle and wall. Contact and frictional forces are included in the force and torque balances to capture particle skipping, rolling, and arrest. These dynamic adhesion signatures are consistent with experimental results and are reminiscent of motion signatures observed in cell adhesion under flowing conditions, although for the synthetic system the particle–wall interactions are controlled by colloidal forces rather than physical bonds between cells and a functionalized surface. As the fraction of the surface (Θ) covered by the cationic patches is increased from zero, particle behavior sequentially transitions from no contact with the surface to skipping, rolling, and arrest, with the threshold patch density for adhesion (Θcrit) always greater than zero and in quantitative agreement with experimental results. The ionic strength of the flowing solution determines the extent of the electrostatic interactions and can be used to tune selectively the dynamic adhesion behavior by modulating two competing effects. The extent of electrostatic interactions in the plane of the wall, or electrostatic zone of influence, governs the importance of spatial fluctuations in the cationic patch density and thus determines if flowing particles contact the wall. The distance these interactions extend into solution normal to the wall determines the strength of the particle–wall attraction, which governs the transition from skipping and rolling to arrest. The influence of Θ, particle size, Debye length, and shear rate is quantified through the construction of adhesion regime diagrams, which delineate the regions in parameter space that give rise to different dynamic adhesion signatures and illustrate selective adhesion based on particle size or curvature. The results of this study are suggestive of novel ways to control particle–wall interactions using randomly distributed surface heterogeneity.  相似文献   
93.
The chemical heterogeneity of polyphenylenes obtained by trimerization poiycycio-condensation of acetylaromatic compounds has been investigated by GLC-MS analysis of the products of trimerization cyclocondensation of acetophenone. The mechanism for the formation of side products of the reaction is discussed. The presence of dypnone fragments in the polyphenylene structure results in a decrease in the thermal stability of these polymers.Deceased March, 1993.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1595–1601, September, 1993.  相似文献   
94.
宋延超  刘俊秀  张阳阳  史文  马会民 《化学学报》2013,71(12):1607-1610
从三个方面考察与总结了一些常用的纳米材料(如碲化镉量子点,纳米金和碳纳米点)在生物分析应用中存在的问题:(1)纳米材料的毒性. 三种裸露纳米材料的平行比较实验表明,碲化镉量子点能够导致细胞代谢活性下降、细胞发生皱缩、甚至死亡,具有很强的毒性;纳米金在高浓度(30 μg/mL)时可对细胞代谢产生一定的抑制作用;而碳纳米点对细胞几乎不产生影响,具有较好的生物相容性. 三种纳米材料的相对毒性为:碲化镉量子点>>纳米金>碳纳米点. 这种相对毒性还得到了绿豆芽生长抑制实验的支持. (2)纳米材料的非均一性. 这主要表现在以下几个方面:粒径分布的非均一性,表面修饰/性质的非均一性,以及在生物样品(如细胞)中分布的非均一性. (3)纳米材料的环境敏感性或稳定性. 实验表明,碲化镉量子点、纳米金和碳纳米点的光学性质对环境pH的改变均十分敏感,而且纳米金不抗盐,在离子强度较高的盐溶液中不稳定、易聚集. 这些问题的严重性在许多以往的研究中并未引起人们的全面重视. 我们希望通过本研究以及对这些问题的再次探讨,能促使人们在实际应用中对相关纳米材料进行重新的审视和合理的选择. 此外,为克服这些问题,我们在文中提到的一些措施可供参考.  相似文献   
95.
In this work, the influence of chemical heterogeneity on the stability of nanocolloidal systems is surveyed with a new method. Zone of influence as a very important parameter for chemical patch surveying is modeled for sphere and flat surface. Surface chemical heterogeneity with specified properties, size, and position are created by spherical coordinate integration method. Rippled sphere model is used to create roughness and the flat surface is created by changing two sphere radius ratio. Using the spherical coordinate system for modeling of surface roughness and chemical heterogeneity is very accurate and fast. Results show that the patches could destabilize the colloidal system at very small sizes. Surface roughness reduces the effect of chemical patches for destabilizing the colloidal system, and with increasing the size of roughness the total DLVO energy interaction increases.  相似文献   
96.
97.
The not-sufficient-enough conductance of semioxidized protonated polyaniline (PANI) is usually attributed to the presence of ordered quasi-metallic domains surrounded by a poorly conducting amorphous phase. The paper presents experimental results testifying to the existence, in semioxidized PANI, of multilevel redox heterogeneity that crucially effects the conductance magnitude in view of specific topology at which higher-oxidized (conducting) domains are surrounded by less oxidized (poorly conducting) domains and because the PANI conduction is extremely sensitive to the oxidation degree. It is shown experimentally that the interphase doping with metals and degenerate semiconductors of a semioxidized salt of PANI and poly(2-acrylamide-2-methyl-1-propanesulfonic acid) (PAMPSA) with a 1: 2 ratio between PANI and PAMPSA raises the PANI-PAMPSA conductivity by 3–8 orders of magnitude due to the formation near the interface of thin layers whose conductance depends on the work function of the material in contact with PANI-PAMPSA and in extreme cases substantially exceeds the conductance of gold and copper at room temperature.  相似文献   
98.
Calculations based on the fractal geometry in the estimation of surface heterogeneity are superior compared with conventional calculation methods (e.g. from the data of gas adsorption or X-ray radiation scattering) as they can be applied without limitation as far as the range of surface sizes of the studied structures is concerned. This paper presents structural characteristics of carbon and carbon- free nanomaterials based on the determined surface and volumetric fractal coefficients. Fractal coefficients were determined from the data obtained by means of two independent methods: sorptometry and atomic force microscopy (AFM). Correlation between porosity parameters and fractal coefficients is presented.  相似文献   
99.
The adsorption isotherms of four activated carbons (Norit RB1, Chemviron BPL, Monolit, and Ambersorb-572) have been examined by nitrogen adsorption at 77.5 K. A method for adsorption potential distribution calculation has been proposed based on the adsorption isotherms. This distribution provides information about possible changes in the Gibbs free energy caused by the energetic and geometrical heterogeneities of an activated carbon as well as by the adsorbate-related entropic effects. The general character of the adsorption potential distribution is clearly visible by its simple relation to the micropore and mesopore distribution.  相似文献   
100.
In this article we study the effect of energetic heterogeneity of a crystalline surface on the adsorption of hydrogen ions (protons) from the liquid phase. In particular, we examine the influence of the shape of the adsorption energy distribution on the equilibrium isotherms of hydrogen ions. To that purpose, a few popular distribution functions, including rectangular, exponential, and asymmetric Gaussian are considered. Additionally, multimodal distribution functions, which may correspond to the adsorption on different crystal planes of the oxide, are also used. Lateral interactions between adsorbed charges are modeled using the potential function proposed by Borkovec et al., which accounts also for polarization of the liquid medium. The results presented here are obtained using both Monte Carlo (MC) simulations and theoretical calculations involving Mean Field Approximation (MFA). They indicate that increased energetic heterogeneity of the adsorbing surface may, in general, considerably change the behavior of the adsorption isotherms, regardless of the assumed distribution function. It is also shown that the predictions of the proposed theory are consistent with the data obtained from the MC simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号