首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20972篇
  免费   2349篇
  国内免费   3650篇
化学   15241篇
晶体学   154篇
力学   746篇
综合类   139篇
数学   1037篇
物理学   2887篇
综合类   6767篇
  2024年   102篇
  2023年   316篇
  2022年   712篇
  2021年   940篇
  2020年   1311篇
  2019年   931篇
  2018年   725篇
  2017年   738篇
  2016年   911篇
  2015年   899篇
  2014年   1166篇
  2013年   1571篇
  2012年   1352篇
  2011年   1204篇
  2010年   897篇
  2009年   1066篇
  2008年   1038篇
  2007年   1193篇
  2006年   1158篇
  2005年   1034篇
  2004年   994篇
  2003年   934篇
  2002年   911篇
  2001年   618篇
  2000年   584篇
  1999年   437篇
  1998年   405篇
  1997年   361篇
  1996年   349篇
  1995年   348篇
  1994年   307篇
  1993年   261篇
  1992年   242篇
  1991年   154篇
  1990年   139篇
  1989年   124篇
  1988年   132篇
  1987年   106篇
  1986年   62篇
  1985年   58篇
  1984年   34篇
  1983年   16篇
  1982年   33篇
  1981年   22篇
  1980年   21篇
  1979年   17篇
  1978年   6篇
  1977年   5篇
  1976年   8篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
991.
Molecular or supramolecular level photoluminescence (PL) modulation combining chemical and photonic input/output signals together in an integrated system can provide potential high-density data memorizing and process functions intended for miniaturized devices and machines. Herein, a PL-responsive supramolecular coordination cage has been demonstrated for complex interactions with redox-active guests. PL signals of the cage can be switched and modulated by adding or retracting Fc derivatives or converting TTF into different oxidation states through chemical or photochemical pathways. As a result, reversible or stepwise PL responses are displayed by these host–guest systems because of the occurrence of photoinduced electron-transfer (PET) or fluorescence resonance energy transfer (FREnT) processes, providing unique nanodevice models bearing off/on logic gates or memristor-like sequential memory and Boolean operation functions.  相似文献   
992.
An automated hierarchical framework, Global Pathway Analysis (GPA), is presented to understand complex chemical kinetics. The behaviour of the reacting system at macro level is bridged to the elementary reaction level by Global Pathways, which are the chemical pathways from an initial reactant species to a final product species. For each Global Pathway, its dominancy and effect on the system, such as those on the production or consumption of radicals, are quantified to understand its contribution to the system. Four examples are presented as demonstration: First, the classical second explosion limit of hydrogen is found to be resulted from the change of dominancy of a pressure-dependent Global Pathway, which consumes radical via H?+?O2?+?M?=?HO2?+?M reaction. Next, it is found that the negative temperature coefficient (NTC) regime of n-heptane is resulted from the competition between a low-temperature Global Pathway and a high-temperature Global Pathway. Third, a non-monotonic relation between autoignition delays and toluene ratio in toluene/n-decane mixture is analysed. This automated framework has been placed in public domain. Reduced kinetic models can be generated based on Global Pathways too. Finally, this methodology is demonstrated using DNS simulation results of the extinction and re-ignition of a turbulent non-premixed flame. The differences between simulation results are investigated using two different kinetics models via the analysis of global pathways.  相似文献   
993.
The stereoselective hydrogenation of alkynes to alkenes is an extremely useful transformation in synthetic chemistry. Despite numerous reports for the synthesis of Z‐alkenes, the hydrogenation of alkynes to give E‐alkenes is still not well resolved. In particular, selective preparation of both Z‐ and E‐alkenes by the same catalytic hydrogenation system using molecular H2 has rarely been reported. In this paper, a novel strategy of using simple alkenes as promoters for the HB(C6F5)2‐catalyzed metal‐free hydrogenation of alkynes was adopted. Significantly, both Z‐ and E‐alkenes can be furnished by hydrogenation with molecular H2 in high yields with excellent stereoselectivities. Further experimental and theoretical mechanistic studies suggest that interactions between H and F atoms of the alkene promoter, borane intermediate, and H2 play an essential role in promoting the hydrogenolysis reaction.  相似文献   
994.
The understanding of the electronic effects of the diastereoselective addition of a nucleophile to a polar substituted aldehyde or ketone is not complete, with several theories competing to explain the data. For numerous hydride reductions of 3‐X‐2‐butanones (X = F, Cl, Br), the selectivity for the major syn isomer is significantly and consistently higher for X = Br than for X = F. This result is rationalized as a shift in mechanism from Cornforth (X = F) to Felkin–Anh (X = Br). The experimental data is well modeled by ab initio calculations for the addition to these ketones by BH3, but not by other nucleophiles such as LiH or LiAlH4. The energetic ordering of the BH3 transition states largely follows the trends for the ground state ketones. Here, consistent with electrostatic arguments, the anti orientation of the C―X and C?O bonds is always lower in energy than the syn arrangement. The gauche conformer is intermediate between these two, becoming gradually lower in energy as X increases in size. The hyperconjugative interaction invoked by the Felkin–Anh model provides only a modest stabilization of the relevant transition states as judged by NBO analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
995.
Dendritic copolymers comprising a hydrophobic core and hydrophilic shell with nearly equal numbers of hydroxyl groups in the shell and different densities in the core were prepared by a multi‐step process based on anionic ring‐opening polymerization. The diversity in the core density was obtained by using copolymer stars with poly(tert‐butyl‐glycidylether)‐block‐polyglycidol arms with nearly equal length of hydrophobic blocks and numbers of hydroxyl groups of polyglycidol but different numbers of arms as macroinitiators. The ability of the dendritic copolymers to serve as a nanocontainer for a ruthenium complex Ru(NH3)3Cl3 with anticancer properties was studied. The possibility of improving the water solubility of this poorly soluble drug by loading it onto dendritic copolymers was investigated. The hydroxyl groups of the dendritic copolymers were used for complexation of the ruthenium compound to the shell. The loading efficiency was analyzed by UV–vis spectroscopy. The dendritic nanoparticles in their hydrated state were visualized using cryo‐TEM. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3488–3497  相似文献   
996.
A AgF/TFA-promoted highly efficient synthesis of a wide range of α-haloketones from haloalkynes is described. The reactions are conducted under convenient conditions and provide products in moderate to excellent yields, with broad substrate scope, including a variety of aromatic chloroalkynes and bromoalkynes.  相似文献   
997.
The aluminum complexes containing two iminophenolate ligands of the type (p‐XC6H4NCHC6H4O‐o)2AlR' (R′=Me ( 3, 4 ) or R′=O(CH2)4OCH=CH2 ( 5, 6 ), X=H ( 3, 5 ), F( 4, 6 )) were synthesized and characterized by 1H, 13C NMR spectroscopy, and X‐ray crystallography. The reaction of AlMe3 with two equivalents of substituted iminophenols gave five‐coordinated {ONR}2AlMe ( 3, 4 ) complexes. Subsequent reaction of these methyl complexes with unsaturated alcohol, HO(CH2)4OCH=CH2, resulted in target compounds 5 and 6 in a good yield. It was shown that the complexes ( 3 ‐ 6 ) are monomeric in solution (NMR) and in solid state (X‐ray analysis). The catalytic activity of the complexes 5 and 6 towards ring‐opening polymerization (ROP) of ?‐caprolactone and d,l ‐lactide was assessed. Complex 5 showed higher activity as compared with 6 , while both of these catalysts induced controlled homo‐ and copolymerization to afford the macromonomers with high content of vinyl ether end groups (Fn > 80%) in a broad range of molecular weights (Mn = 4000–30,000 g mol?1) with relatively narrow MWD (Mw/Mn = 1.1–1.5). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1237–1250  相似文献   
998.
《中国化学》2018,36(10):950-954
Organoboron is well‐developed and broadly utilized organometallic reagents in organic synthesis due to its extraordinary performances in transition‐metal catalyzed C‐C and C‐X bonds construction. Catalytic C—H borylation and further transformations catalyzed by transition metal catalysts in the absence of oxidants were well studied in decades. However, as known, transition metal catalyzed oxidative C—H borylations were not reviewed up to date. In this article the oxidative borylation of C(sp2)‐H and C(sp3)‐H bonds were summarized and their mechanisms were also accounted.  相似文献   
999.
As a continuation of our efforts to develop new heterogeneous nanomagnetic catalysts for greener reactions, we identified a Schiff base–palladium(II) complex anchored on magnetic nanoparticles (SB‐Pd@MNPs) as a highly active nanomagnetic catalyst for Suzuki–Miyaura cross‐coupling reactions between phenylboronic acid and aryl halides and for the reduction of nitroarenes using sodium borohydride in an aqueous medium at room temperature. The SB‐Pd@MNPs nanomagnetic catalyst shows notable advantages such as simplicity of operation, excellent yields, short reaction times, heterogeneous nature, easy magnetic work up and recyclability. Characterization of the synthesized SB‐Pd@MNPs nanomagnetic catalyst was performed with various physicochemical methods such as attenuated total reflectance infrared spectroscopy, UV–visible spectroscopy, inductively coupled plasma atomic emission spectroscopy, energy‐dispersive X‐ray spectroscopy, field‐emission scanning electron microscopy, transmission electron microscopy, powder X‐ray powder diffraction, thermogravimetric analysis and Brunauer–Emmett–Teller surface area analysis.  相似文献   
1000.
The core–shell structure Fe3O4/SiO2 magnetic microspheres were prepared by a sol–gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu2+, Ni2+ and Zn2+, were chelated on the Fe3O4@SiO2–IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni2+‐chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3O4@SiO2–IDA–Ni2+ magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His‐tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号