首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20972篇
  免费   2349篇
  国内免费   3650篇
化学   15241篇
晶体学   154篇
力学   746篇
综合类   139篇
数学   1037篇
物理学   2887篇
综合类   6767篇
  2024年   102篇
  2023年   316篇
  2022年   712篇
  2021年   940篇
  2020年   1311篇
  2019年   931篇
  2018年   725篇
  2017年   738篇
  2016年   911篇
  2015年   899篇
  2014年   1166篇
  2013年   1571篇
  2012年   1352篇
  2011年   1204篇
  2010年   897篇
  2009年   1066篇
  2008年   1038篇
  2007年   1193篇
  2006年   1158篇
  2005年   1034篇
  2004年   994篇
  2003年   934篇
  2002年   911篇
  2001年   618篇
  2000年   584篇
  1999年   437篇
  1998年   405篇
  1997年   361篇
  1996年   349篇
  1995年   348篇
  1994年   307篇
  1993年   261篇
  1992年   242篇
  1991年   154篇
  1990年   139篇
  1989年   124篇
  1988年   132篇
  1987年   106篇
  1986年   62篇
  1985年   58篇
  1984年   34篇
  1983年   16篇
  1982年   33篇
  1981年   22篇
  1980年   21篇
  1979年   17篇
  1978年   6篇
  1977年   5篇
  1976年   8篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
981.
Metal oxide photocatalysts (MOPCs) decompose organic molecules under illumination. However, the application of MOPCs in industry and research is currently limited by their intrinsic hydrophilicity because MOPCs can be wetted by most liquids. To achieve liquid repellency, the surface needs to possess a low surface energy, but most organic molecules with low surface energy are degraded by photocatalytic activity. Herein, current methods to achieve liquid repellency on MOPCs, while preventing degradation of hydrophobic coatings, are reviewed. Classically, composite materials containing MOPCs and hydrophobic organic compounds possess good liquid repellency. However, composites normally form irregular coatings and are hard to prepare on surfaces such as those that are mesoporous or nanostructured. In addition, the adhesion of composites to substrates is often weak, resulting in delamination. Recent studies have shown that the direct grafting reaction of polydimethylsiloxane (PDMS) from silicone oil (methyl-terminated PDMS) under illumination results in a stable polymer brush. This easy and simple grafting method allows us to create stable liquid-repellent surfaces on MOPCs of various types, structures, and sizes. In particular, super-liquid-repellent drops with an underlying air layer can be created on PDMS-grafted nano-/microstructured MOPCs. Potential applications of surfaces combining liquid repellency and photocatalytic activity are also discussed; thus offering new ways of using MOPCs in a wider range of applications.  相似文献   
982.
The activation of CS2 is of interest in a broad range of fields and, more particularly, in the context of creating new C−C bonds. The reaction of the dinuclear ytterbium(II) complex [Yb2L4], 1 , [L=(OtBu)3SiO] with carbon disulfide led to the isolation of unprecedented reduction products. In particular, the crystallographic characterization of complex [Yb2L4(μ-C2S2)], 2 , provided the first example of an acetylenedithiolate ligand formed from metal reduction of CS2. Computational studies indicated that this unprecedented reactivity can be ascribed to the unusual binding mode of CS22− in the isolated “key intermediate” [Yb2L4(μ-CS2)], 3 , which results from the dinuclear nature of 1 .  相似文献   
983.
A zinc containing metal–organic gel (Zn-MOG) with embedded free ions, which exhibits self-healing properties, has been synthesized for application in supercapacitors. The activated carbon-based flexible supercapacitor device with the MOG electrolyte has a broad potential window of 2.1 V, with high retention of specific capacitance compared to the traditional polyvinyl alcohol (PVA)-based gel. The Zn-MOG does not require an additional electrolyte. The sodium and sulphate ions embedded in the MOG are sufficient enough for the charge storage.  相似文献   
984.
Poly[9,9′‐dihexylfluorene‐2,7‐diyl)‐6,6″‐(2,2′:6′,2″‐terpyridine)] (LaPPS75) and its complexes with neodymium were synthesized and characterized. Magnetic measurements showed that the noncomplexed polymer presented a ferromagnetic contribution due to the formation of π stacking, and that in absence of those, the ferromagnetic behavior is suppressed. The pristine polymer, the complexed one and a low‐molecular‐weight model compound with the same structure of the complexed site in the parent polymer were studied. The observed behavior found is presented and discussed, the most important finding was that when a conjugated chain is used as a host for the metallic ion, an amplification of four times for the magnetization is achieved, using the same metallic content for complexed polymer and model compound for comparison. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 304–311  相似文献   
985.
A new uranyl containing metal–organic framework, RPL-1 : [(UO2)2(C28H18O8)] . H2O (RPL for Radiochemical Processing Laboratory), was prepared, structurally characterized, and the solid-state photoluminescence properties explored. Single crystal X-ray diffraction data reveals the structure of RPL - 1 consists of two crystallographically unique three dimensional, interpenetrating nets with a 4,3-connected tbo topology. Each net contains large pores with an average width of 22.8 Å and is formed from monomeric, hexagonal bipyramidal uranyl nodes that are linked via 1,2,4,5-tetrakis(4-carboxyphenyl)benzene (TCPB) ligands. The thermal and photophysical properties of RPL-1 were investigated using thermogravimetric analysis and absorbance, fluorescence, and lifetime spectroscopies. The material displays excellent thermal stability and temperature dependent uranyl and TCPB luminescence. The framework is stable in aqueous media and due to the large void space (constituting 76 % of the unit cell by volume) can sequester organic dyes, the uptake of which induces a visible change to the color of the material.  相似文献   
986.
The conventional condensation and refluxing process was employed to synthesize Ni(II) and Cu(II) complexes of Methylcarbamatethiosemicarbazone ligand. Reactions were carried out at the pH of 7. The molar ratio of the ligand and metal salt was 2:1. The structures of the synthesized metal complexes were suggested by different analytical techniques such as magnetic susceptibility, molar conductance, IR, EPR and UV spectroscopy. Experimental studies confirmed the octahedral geometry for all the complexes. The geometry of the ligand and complexes were also confirmed by theoretical studies. The complexes were investigated for biological action against pathogenic fungi (C. krusei, C. albican) and bacteria (S. aureus, E. coli). The antimicrobial results confirmed superior inhibition potential of the metal complexes as compared with the parent ligand. The enhanced antimicrobial activities might be due to the chelation. Molecular-docking assays confirmed the strong interaction of ligand with target antimicrobial protein DNA gyrase-B.  相似文献   
987.
Surface organic ligands are critical in dictating the structures and properties of atomically precise metal nanoclusters. In contrast to the conventionally used thiolate, phosphine and alkynyl ligands, nitrogen donor ligands have not been used in the protection for well-defined metal nanoclusters until recently. This review focuses on recent developments in atomically precise metal nanoclusters stabilized by different types of nitrogen donor ligands, in which the synthesis, total structure determination and various properties are covered. We hope that this review will provide insights into the rational design of N donor-protected metal nanoclusters in terms of structural and functional modulation.  相似文献   
988.
Octahedral iridium(III) complexes containing two bidentate cyclometalating 5‐tert‐butyl‐2‐phenylbenzoxazole ( IrO ) or 5‐tert‐butyl‐2‐phenylbenzothiazole ( IrS ) ligands in addition to two labile acetonitrile ligands are demonstrated to constitute a highly versatile class of asymmetric Lewis acid catalysts. These complexes feature the metal center as the exclusive source of chirality and serve as effective asymmetric catalysts (0.5–5.0 mol % catalyst loading) for a variety of reactions with α,β‐unsaturated carbonyl compounds, namely Friedel–Crafts alkylations (94–99 % ee), Michael additions with CH‐acidic compounds (81–97 % ee), and a variety of cycloadditions (92–99 % ee with high d.r.). Mechanistic investigations and crystal structures of an iridium‐coordinated substrates and iridium‐coordinated products are consistent with a mechanistic picture in which the α,β‐unsaturated carbonyl compounds are activated by two‐point binding (bidentate coordination) to the chiral Lewis acid.  相似文献   
989.
Strain bursts are often observed during compression tests of single crystal micropillars. In this work, we formulate a new continuum model that accounts for the strain bursts within the framework of crystal plasticity. The strain bursts are separated from the loading stage (nearly elastic loading) by introducing a dimensionless constant in the continuum model, and are detected by load serrations. The boundary conditions in the context of micropillar compression are studied and they are shown to be changing and unpredictable as plastic deformation proceeds. To evaluate the validity of our model, finite element simulations of the uniaxial compression tests on nickel micropillars are performed. Our simulations produce clearly visible strain bursts during the plastic flow and the produced intermittent flows are comparable with the experimental observations. For the bulk crystal, a series of strain bursts is identified in the course of plastic flow, despite an apparently smooth stress–strain response. We also show that the intermittent flow is intensified in the micrometer-scale due to both increasing numbers of the successive strain bursts and increasing amplitude of the strain burst, when the specimen size decreases. Finally, we show that the occurrences of the strain bursts are always associated with negative values of the second-order work.  相似文献   
990.
We propose an improved framework for dynamic mode decomposition (DMD) of 2‐D flows for problems originating from meteorology when a large time step acts like a filter in obtaining the significant Koopman modes, therefore, the classic DMD method is not effective. This study is motivated by the need to further clarify the connection between Koopman modes and proper orthogonal decomposition (POD) dynamic modes. We apply DMD and POD to derive reduced order models (ROM) of the shallow water equations. Key innovations for the DMD‐based ROM introduced in this paper are the use of the Moore–Penrose pseudoinverse in the DMD computation that produced an accurate result and a novel selection method for the DMD modes and associated amplitudes and Ritz values. A quantitative comparison of the spatial modes computed from the two decompositions is performed, and a rigorous error analysis for the ROM models obtained is presented. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号