首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1132篇
  免费   101篇
  国内免费   121篇
化学   547篇
力学   23篇
综合类   22篇
数学   49篇
物理学   158篇
综合类   555篇
  2024年   7篇
  2023年   25篇
  2022年   94篇
  2021年   89篇
  2020年   62篇
  2019年   45篇
  2018年   24篇
  2017年   37篇
  2016年   43篇
  2015年   57篇
  2014年   71篇
  2013年   62篇
  2012年   52篇
  2011年   61篇
  2010年   51篇
  2009年   42篇
  2008年   48篇
  2007年   38篇
  2006年   42篇
  2005年   54篇
  2004年   55篇
  2003年   42篇
  2002年   53篇
  2001年   32篇
  2000年   28篇
  1999年   16篇
  1998年   28篇
  1997年   11篇
  1996年   9篇
  1995年   7篇
  1994年   9篇
  1993年   12篇
  1992年   15篇
  1991年   7篇
  1990年   6篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1976年   1篇
  1971年   1篇
排序方式: 共有1354条查询结果,搜索用时 15 毫秒
991.
Ovarian cancer remains a major public health issue due to its poor prognosis. To develop more effective therapies, it is crucial to set-up reliable models that closely mimic the complexity of the ovarian tumor's microenvironment. 3D bioprinting is currently a promising approach to build heterogenous and reproducible cancer models with controlled shape and architecture. However, this technology is still poorly investigated to model ovarian tumors. In this study, a 3D bioprinted ovarian tumor model combining cancer cells (SKOV-3) and cancer associated fibroblasts (CAFs) are described. The resulting tumor models show their ability to maintain cell viability and proliferation. Cells are observed to self-assemble in heterotypic aggregates. Moreover, CAFs are observed to be recruited and to circle cancer cells reproducing an in vivo process taking place in the tumor microenvironment. Interestingly, this approach also shows its ability to rapidly generate a high number of reproducible tumor models that can be subjected to usual characterizations (cell viability and metabolic activity; histology and immunological studies; and real-time imaging). Therefore, these ovarian tumor models can be an interesting tool for high throughput drug screening applications.  相似文献   
992.
One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi-functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL−1) and gelatin methacryloyl (GelMA, 12 wt%) is reported for robust angiogenesis, bone regeneration and anti-tumor therapy. The CQDs are synthesized from a plant-inspired bioactive molecule, 1, 3, 5-trihydroxybenzene. The 3D printed GelMA-CQDs hydrogels display typical shear-thinning behavior with excellent printability. The fabricated hydrogel displayed M2 polarization of macrophage (Raw 264.7) cells via enhancing anti-inflammatory genes (e.g., IL-4 and IL10), and induced angiogenesis and osteogenesis of human bone mesenchymal stem cells (hBMSCs). The bioprinted hBMSCs are able to produce vessel-like structures after 14 d of incubation. Furthermore, the 3D printed hydrogel scaffolds also show remarkable near infra-red (NIR) responsive properties under 808 nm NIR light (1.0 W cm−2) irradiation with controlled release of antitumor drugs (≈49%) at pH 6.5, and thereby killing the osteosarcoma cells. Therefore, it is anticipated that the tissue regeneration and healing ability with therapeutic potential of the GelMA-CQDs scaffolds may provide a promising alternative for traumatic tissue regeneration via augmenting angiogenesis and accelerated immunomodulation.  相似文献   
993.
A novel sensitive and simple electrochemical DNA sensor is reported for the determination of p53 tumor suppressor gene. A gold nanoparticle/graphene nanocomposite-modified glassy carbon electrode was prepared and methylene blue was used as the hybridization redox indicator. Scanning electron microscopic and electrochemical characterization demonstrated that the gold nanoparticles and graphene were present on the electrode. The resulting sensor provided suitable electrochemical response to the p53 tumor suppressor gene with a linear dynamic range from 0.1 to 1000?nM. The limit of detection was 0.012?nM. The sensor was able to differentiate a complete complementary DNA sequence, single-base mismatched DNA sequence, and a three-base mismatched DNA sequence. The precision of the device was satisfactory, with a relative standard deviation of 4.1% for 11 measurements. The combination of gold nanoparticles and a graphene nanocomposite provided enhanced capabilities for the determination of DNA for clinical applications.  相似文献   
994.
Semiconducting polymer nanoparticles (SPNs) have evolved into a new class of photonic materials with great potential for biomedical applications. Depending on the polymer structures, SPNs can be developed into optical agents for fluorescence and chemiluminescence imaging, photosensitizers for photodynamic therapy, and heat converters for photothermal therapy. In this feature article, recent work is summarized on the development of SPNs for in vivo photoacoustic (PA) imaging, a state‐of‐the‐art imaging modality that converts light energy into mechanical acoustic waves to provide deep tissue penetration. The structure–property relationship and doping approaches are discussed to reveal the importance of promoting nonradiative decay in amplifying the PA brightness of SPNs. Moreover, their imaging applications, including lymph node mapping, tumor imaging, and monitoring of pathological indexes, are highlighted. These studies demonstrate that SPNs can serve as versatile PA agents for advanced molecular imaging applications.

  相似文献   

995.
A rational design of magnetic capturing nanodevices, based on a specific interaction with circulating tumor cells (CTCs), can advance the capturing efficiency and initiate the development of modern smart nanoformulations for rapid isolation and detection of these CTCs from the bloodstream. Therefore, the development and evaluation of magnetic nanogels (MNGs) based on magnetic nanoparticles and linear thermoresponsive polyglycerol for the capturing of CTCs with overexpressed transferrin (Tf+) receptors has been presented in this study. The MNGs are synthesized using a strain‐promoted “click” approach which has allowed the in situ surface decoration with Tf–polyethylene glycol (PEG) ligands of three different PEG chain lengths as targeting ligands. An optimal value of around 30% of cells captures is achieved with a linker of eight ethylene glycol units. This study shows the potential of MNGs for the capture of CTCs and the necessity of precise control over the linkage of the targeting moiety to the capturing device.

  相似文献   

996.
The analysis of circulating tumor cells (CTCs) is an important capability that may lead to new approaches for cancer management. CTC capture devices developed to date isolate a bulk population of CTCs and do not differentiate subpopulations that may have varying phenotypes with different levels of clinical relevance. Here, we present a new device for CTC spatial sorting and profiling that sequesters blood‐borne tumor cells with different phenotypes into discrete spatial bins. Validation data are presented showing that cancer cell lines with varying surface expression generate different binning profiles within the device. Working with patient blood samples, we obtain profiles that elucidate the heterogeneity of CTC populations present in cancer patients and also report on the status of CTCs within the epithelial‐to‐mesenchymal transition (EMT).  相似文献   
997.
Inspired by the knowledge that most antibodies recognize a conformational epitope because of the epitope’s specific three‐dimensional shape rather than its linear structure, we combined scaffold‐based peptide design and surface molecular imprinting to fabricate a novel nanocarrier harboring stable binding sites that captures a membrane protein. In this study, a disulfide‐linked α‐helix‐containing peptide, apamin, was used to mimic the extracellular, structured N‐terminal part of the protein p32 and then serve as an imprinting template for generating a sub‐40 nm‐sized polymeric nanoparticle that potently binds to the target protein, recognizes p32‐positive tumor cells, and successfully mediates targeted photodynamic therapy in vivo. This could provide a promising alternative for currently used peptide‐modified nanocarriers and may have a broad impact on the development of polymeric nanoparticle‐based therapies for a wide range of human diseases.  相似文献   
998.
999.
目的:探讨4种恶性血液病患者血液粘滞度变化规律和在临床上的意义。方法:通过血液流变学测试仪测定44例恶性血液病患者及40例正常人血液粘滞度指标,并进行多因素相关性分析,结果:急性白血病(AL)患者全血粘度降低,血浆粘度正常;慢性粒细胞白血病(CML)与非霍杰金氏淋巴瘤(NHL)患者ηb升高,ηp正常,多发性骨髓瘤(MM)患者ηb、ηp升高。结论:4种恶性血液病患者存在不同特征的血液粘滞度异常,分析  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号