首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12968篇
  免费   1233篇
  国内免费   984篇
化学   2496篇
晶体学   406篇
力学   637篇
综合类   80篇
数学   2374篇
物理学   4084篇
综合类   5108篇
  2025年   49篇
  2024年   145篇
  2023年   200篇
  2022年   250篇
  2021年   329篇
  2020年   419篇
  2019年   397篇
  2018年   325篇
  2017年   453篇
  2016年   422篇
  2015年   454篇
  2014年   735篇
  2013年   835篇
  2012年   743篇
  2011年   934篇
  2010年   757篇
  2009年   812篇
  2008年   708篇
  2007年   907篇
  2006年   740篇
  2005年   663篇
  2004年   515篇
  2003年   470篇
  2002年   417篇
  2001年   361篇
  2000年   320篇
  1999年   265篇
  1998年   244篇
  1997年   220篇
  1996年   174篇
  1995年   143篇
  1994年   127篇
  1993年   106篇
  1992年   111篇
  1991年   88篇
  1990年   79篇
  1989年   57篇
  1988年   49篇
  1987年   32篇
  1986年   23篇
  1985年   19篇
  1984年   15篇
  1983年   8篇
  1982年   16篇
  1981年   7篇
  1980年   7篇
  1979年   10篇
  1978年   7篇
  1975年   4篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
We have grown group III nitride films on Al2O3 (0 0 0 1), 6H-SiC (0 0 0 1), and ZnO () substrates by pulsed electron beam deposition (PED) for the first time and investigated their characteristics. We found that c-plane AlN and GaN grow epitaxially on these substrates. It has been revealed that the growth of GaN on atomically flat 6H-SiC substrates starts with the three-dimensional mode and eventually changes into the two-dimensional mode. The GaN films exhibited strong near-band-edge emission in their room temperature photoluminescence spectra. We also found that the use of PED allows us to reduce the epitaxial growth temperature for GaN down to 200 °C.  相似文献   
112.
Abstract  Micro-solid oxide fuel cells (micro-SOFC) are predicted to be of high energy density and are potential power sources for portable electronic devices. A micro-SOFC system consists of a fuel cell comprising a positive electrode-electrolyte-negative electrode (i.e. PEN) element, a gas-processing unit, and a thermal system where processing is based on micro-electro-mechanical-systems fabrication techniques. A possible system approach is presented. The critical properties of the thin film materials used in the PEN membrane are discussed, and the unsolved subtasks related to micro-SOFC membrane development are pointed out. Such a micro-SOFC system approach seems feasible and offers a promising alternative to state-of-the-art batteries in portable electronics. Graphical abstract  Graphical Abstract text   相似文献   
113.
The pore walls, and one of the surfaces of poly(ethylene terephtalate) track membrane were modified by plasma of aniline, which resulted in formation of the polyelectrolyte transient cationite-anionite layers. It is shown that the membrane produced possesses asymmetry of conductivity, i.e., the effect of the current rectification similar to p-n junction in semiconductors is observed.  相似文献   
114.
Metallic Zn nanowires have been synthesized by a new carbothermal reduction route in which ZnO and Eucalyptus sp. tar pitch were used as source materials. This simple practical procedure was capable of producing Zn nanowires in large quantities without reoxidation. This process was carried out in inert atmosphere, without vacuum or catalyst, at temperatures (800–900 °C) lower than those required in the carbothermal reduction of ZnO with graphite. A comparative study was performed using graphite that is traditionally used as a ZnO reducer, under the same experimental conditions, however, no reaction was observed. The new process involves the pyrolysis of biopitch to obtain a highly reactive coke and the reduction of ZnO with the release of Zn(v) for the growth of Zn(s) nanowires. The resulting Zn nanowires were characterized by X-ray diffractometry, energy-dispersive spectroscopy and scanning electron microscopy. Differential thermal analysis and thermogravimetric analysis coupled with infrared analysis techniques were used in an effort to understand the underlying mechanism and establish the best ratio biopitch/ZnO to be used. This paper presents the characterization of the as-synthesized nanowires and discusses the main reactions involved in their production.  相似文献   
115.
The performance of dye‐sensitized ZnO solar cells was improved by a facile surface‐treatment approach through chemical‐bath deposition. After the surface treatment, the quantum dots of Zn2SnO4 were deposited onto ZnO nanoparticles accompanied by the aggregations of Zn2SnO4 nanoparticles. The ZnO film displayed a better resistance to acidic dye solution on account of the deposited Zn2SnO4 nanoparticles. Meanwhile, the open‐circuit photovoltage was greatly enhanced, which can be ascribed to the increased conduction‐band edge of ZnO and inhibited interfacial charge recombination. Although the deposition of Zn2SnO4 decreased the adsorption amounts of N719 dye, the aggregates of Zn2SnO4 with a size of 350–450 nm acted as the effective light‐scattering layer, thereby resulting in an improved short‐circuit photocurrent. By co‐sensitizing 10 μm‐thick ZnO film with N719 and D131 dyes, a top efficiency of 4.38 % was achieved under the illumination of one sun (AM 1.5, 100 mW cm?2).  相似文献   
116.
Low‐layered, transparent graphene is accessible by a chemical vapor deposition (CVD) technique on a Ni‐catalyst layer, which is deposited on a <100> silicon substrate. The number of graphene layers on the substrate is controlled by the grain boundaries in the Ni‐catalyst layer and can be studied by micro Raman analysis. Electrical studies showed a sheet resistance (Rsheet) of approximately 1435 Ω per □, a contact resistance (Rc) of about 127 Ω, and a specific contact resistance (Rsc) of approximately 2.8×10?4 Ω cm2 for the CVD graphene samples. Transistor output characteristics for the graphene sample demonstrated linear current/voltage behavior. A current versus voltage (IdsVds) plot clearly indicates a p‐conducting characteristic of the synthesized graphene. Gas‐sensor measurements revealed a high sensor activity of the low‐layer graphene material towards H2 and CO. At 300 °C, a sensor response of approximately 29 towards low H2 concentrations (1 vol %) was observed, which is by a factor of four higher than recently reported.  相似文献   
117.
《Analytical letters》2012,45(9):1899-1912
ABSTRACT

In this article, we present a method to pattern glass substrates with sol-gel derived thin films. This method is based on the aerosol deposition of sol-gel precursor solutions using an inexpensive, commercially available airbrush. The technique was demonstrated using Cy5-doped sol-gel thin films for the creation of wavelength conversion devices. The films deposited were mechanically and chemically rigid, and patterns could be achieved with a resolution limit of approximately 250 μm. Constructing channel waveguides was also attempted using both zirconium- and titanium-based sol-gel thin films. Deposited thin films of these materials showed graininess that limited the ability to couple light into the films and increased the observed scatter. However, light was successfully coupled into the titanium-based sol-gel film using small lens-like structures created on the glass surface.  相似文献   
118.
《Analytical letters》2012,45(10):1759-1771
A robust gold-coated solid-phase microextraction fiber was rapidly prepared on an etched stainless-steel wire based on chemical deposition. Gold(III) was reduced to produce a mechanically robust fiber with a stable coating. Subsequently, it was applied for solid-phase microextraction of five polycyclic aromatic hydrocarbons in water samples coupled to high performance liquid chromatography with an ultraviolet-visible detector. The preconcentration conditions were optimized, including extraction and desorption time, temperature, stirring rate, and ionic strength. Under the optimized conditions, the calibration graphs were linear in the range from 1 to 500 µg · L?1 for naphthalene and 0.20–500 µg · L?1 for phenanthrene, anthracene, fluoranthene, and pyrene. Limits of detection were between 0.016 and 0.22 µg · L?1 (signal-to-noise ratio = 3). The analysis of water samples showed that the recoveries ranged from 86.0% to 112.9% with relative standard deviations between 2.03% and 11.7%. The fiber coating was sensitive and suitable for the preconcentration and determination of polycyclic aromatic hydrocarbons in environmental waters. Compared with previously reported solid-phase microextraction methods, this device offered easy preparation, low cost, resistance to organic solvents, good stability, and high durability.  相似文献   
119.
In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficiently improve the electronic conductivity of Si-based anode,but also play a key role in alleviating the negative effect from huge volume expansion over discharge/charge of Si-based anode.The resulting material delivered a reversible capacity of 1094 mAh/g,and exhibited excellent cycling stability.It kept a reversible capacity of 1050 mAh/g over 200 cycles with a capacity retention of 96%.  相似文献   
120.
运用共沉淀和元素化学沉积相结合的方法,制备出了具有Ag/C包覆层的层状富锂固溶体材料Li [Li0.2Mn0.54Ni0.13Co0.13]O2.通过X射线衍射(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、恒流充放电、循环伏安(CV),电化学阻抗谱(EIS)和X射线能量散射谱(EDS)方法,研究了Ag/C包覆层对Li[Li0.2Mn0.54Ni03Co013]O2电化学性能的影响.结果表明,Ag/C包覆层的厚度约为25 nm,Ag/C包覆在保持了固溶体材料α-NaFeO2六方层状晶体结构的前提下,显著地改善了Li[Li0.0Mn054Ni0.13Co013]O2的电化学性能.在2.0-4.8 V (vs Li/Li+)的电压范围内,首次放电(0.05C)容量由242.6 mAh·g-1提高到272.4 mAh·g-1,库仑效率由67.6%升高到77.4%;在0.2C倍率下,30次循环后,Ag/C包覆的电极材料容量为222.6 mAh·g-1,比未包覆电极材料的容量高出14.45%;包覆后的电极材料在1C下的容量仍为0.05C下的81.3%.循环伏安及电化学交流阻抗谱研究表明,Ag/C包覆层抑制了材料在充放电过程中氧的损失,有效降低了Li[Li02Mn0.54Ni0.13Co013]O2颗粒的界面膜电阻与电化学反应电阻.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号