首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54356篇
  免费   5101篇
  国内免费   6884篇
化学   39819篇
晶体学   2883篇
力学   1091篇
综合类   173篇
数学   313篇
物理学   12253篇
综合类   9809篇
  2024年   79篇
  2023年   421篇
  2022年   983篇
  2021年   1058篇
  2020年   1431篇
  2019年   1444篇
  2018年   1493篇
  2017年   1943篇
  2016年   2295篇
  2015年   1987篇
  2014年   2647篇
  2013年   4505篇
  2012年   3348篇
  2011年   3106篇
  2010年   2731篇
  2009年   3184篇
  2008年   3150篇
  2007年   3489篇
  2006年   3284篇
  2005年   2881篇
  2004年   2811篇
  2003年   2331篇
  2002年   2016篇
  2001年   1572篇
  2000年   1490篇
  1999年   1394篇
  1998年   1202篇
  1997年   1132篇
  1996年   1142篇
  1995年   1025篇
  1994年   892篇
  1993年   716篇
  1992年   636篇
  1991年   488篇
  1990年   387篇
  1989年   331篇
  1988年   342篇
  1987年   292篇
  1986年   174篇
  1985年   135篇
  1984年   123篇
  1983年   37篇
  1982年   74篇
  1981年   39篇
  1980年   27篇
  1979年   22篇
  1978年   8篇
  1976年   7篇
  1975年   7篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 247 毫秒
81.
A room temperature ionic liquid, 1-pentyl-3-methylimidazolium bromide, [pmIm]Br efficiently catalyzes Michael addition of thiols and diethyl dithiophosphate to a variety of conjugated alkenes such as α,β-unsaturated carbonyl compounds, carboxylic esters, nitriles and chalcones without requiring any other organic solvent and catalyst. The ionic liquid can be recycled for subsequent reactions without any appreciable loss of efficiency.  相似文献   
82.
The process of single liquid drop impact on thin liquid surface is numerically simulated with moving particle semi‐implicit method. The mathematical model involves gravity, viscosity and surface tension. The model is validated by the simulation of the experimental cases. It is found that the dynamic processes after impact are sensitive to the liquid pool depth and the initial drop velocity. In the cases that the initial drop velocity is low, the drop will be merged with the liquid pool and no big splash is seen. If the initial drop velocity is high enough, the dynamic process depends on the liquid depth. If the liquid film is very thin, a bowl‐shaped thin crown is formed immediately after the impact. The total crown subsequently expands outward and breaks into many tiny droplets. When the thickness of the liquid film increases, the direction of the liquid crown becomes normal to the surface and the crown propagates outward. It is also found that the radius of the crown is described by a square function of time: rC = [c(t ? t0)]0.5. When the liquid film is thick enough, a crown and a deep cavity inside it are formed shortly after the impact. The bottom of the cavity is initially oblate and then the base grows downward to form a sharp corner and subsequently the corner moves downward. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
83.
Numerical simulation aspects, related to low Reynolds number free boundary viscous flows at micro and mesolevel during the resin impregnation stage of the liquid composite moulding process (LCM), are presented in this article. A free boundary program (FBP), developed by the authors, is used to track the movement of the resin front accurately by accounting for the surface tension effects at the boundary. Issues related to the global and local mass conservation (GMC and LMC) are identified and discussed. Unsuitable conditions for LMC and consequently GMC are uncovered at low capillary numbers, and hence a strategy for the numerical simulation of such flows is suggested. FBP encompasses a set of subroutines that are linked to modules in ANSYS. FBP can capture the void formation dynamics based on the analysis developed. We present resin impregnation dynamics in two dimensions. Extension to three dimensions is a subject for further research. Several examples are shown and efficiency of different stabilization techniques are compared. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
84.
We have confirmed light diffraction of aligned polymer fibers obtained by a phase separation of an anisotropic-phase solution of liquid crystal and polymer. He—Ne laser light passing through the polymer fibers was scattered in the axis vertical to the fibers, and had two peaks of light intensity symmetrical to the center of the transmitting laser spot. The two peaks were found to be caused by light diffraction due to the periodic polymer-fiber dispersion because the peaks corresponded to values calculated by intervals between the fibers. The periodical fiber networks are considered to be formed by anisotropic spinodal decomposition. This effect can be used to measure the dispersion order of the polymer fibers. © 2004 The Optical Society of Japan  相似文献   
85.
Absorption and luminiscence measurements were performed on lead-doped KCl:KI mixed single crystals. Strong differences were found between as-grown and quenched samples. New bands were observed in the absorption spectra of unquenched samples in the spectral region between the limit positions of the A bands, corresponding to chloride or iodide lattices. The strong band at 449 nm dominates the luminescence of these samples at low temperatures. Its kinetics have a complicated form and the decay time is in the interval from ns to ms. Quenched samples have a well-known luminescence spectrum caused by octahedral lead impurity centres in KCl single crystals. The kinetics, however, also indicate mixed chlorine and iodine coordination of lead in the investigated crystals.  相似文献   
86.
The cationic polymerization of styrene in a neutral ionic liquid, 1‐butyl‐3‐methylimidazolium hexafluorophosphate, with a 1‐phenetyl chloride/TiCl4 initiating system is reported. The polymerization proceeds to a high conversion, but an analysis of the matrix‐assisted laser desorption/ionization time‐of‐flight spectra of the polymers indicates that chain transfer is significant, leading to a lack of control over the molecular weight and molecular weight distribution. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3230–3235, 2004  相似文献   
87.
Liquid‐crystalline, segmented polyurethanes with methoxy–biphenyl mesogens pendant on the chain extender were synthesized by the conventional prepolymer technique and esterification reaction. Two, side‐chain, liquid‐crystalline (SCLC) polyurethanes with mesogens having spacers of six and eight methylene units were prepared. The structures of the mesogenic units and SCLC polyurethanes were confirmed by Fourier transform infrared spectroscopy and 1H NMR. Polymer properties were also examined by solubility tests, water uptakes, and inherent viscosity measurements. Differential scanning calorimetry studies indicated that the transition temperature of the isotropic to the liquid‐crystalline phase decreased with increasing spacer length. Wide‐angle X‐ray diffraction (WAXD) studies revealed the existence of liquid‐crystalline phases for both SCLC polyurethanes. Polarized optical microscopic investigations further confirmed the thermotropic liquid‐crystalline behaviors and nematic mesophases of both samples. Thermogravimetric analysis displayed better thermal stabilities for both SCLC polymers and indicated that the presence of mesogenic side chains may increase the thermal stability of segmented polyurethanes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 290–302, 2004  相似文献   
88.
89.
The formation and characterization of some interpolyelectrolyte complex (IPEC) nanoparticles based on poly(sodium 2‐acrylamido‐2‐methylpropanesulfonate) (NaPAMPS), as a function of the polycation structure, polyanion molar mass, and polyion concentration, were followed in this work. Poly(diallyldimethylammonium chloride) and two polycations (PCs) containing (N,N‐dimethyl‐2‐hydroxypropyleneammonium chloride) units in the backbone (PCA5 and PCA5D1) were used as starting polyions. The complex stoichiometry, (n?/n+)iso, was pointed out by optical density at 500 nm (OD500), polyelectrolyte titration, and dynamic light scattering. IPEC nanoparticle sizes were influenced by the polycation structure and polyanion molar mass only before the complex stoichiometry, which was higher for the more hydrophilic polycations (PCA5 and PCA5D1) and for a higher NaPAMPS molar mass, and were almost independent of these factors after that, at a flow rate of the added polyion of about 0.28 mL × (mL PC)?1 × h?1. The IPEC nanoparticle sizes remained almost constant for more than 2 weeks, both before and after the complex stoichiometry, at low concentrations of polyions. NIPECs as stable colloidal dispersions with positive charges in excess were prepared at a ratio between charges (n?/n+) of 0.7, and their storage colloidal stability, as a function of the polycation structure and polyion concentration (from 0.8 to ca. 7.8 mmol/L), was demonstrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2495–2505, 2004  相似文献   
90.
Two series of fluorinated polyimides were prepared from 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)biphenyl ( 2 ) and 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐1,1′‐binaphthyl ( 4 ) with various aromatic dianhydrides via a conventional, two‐step procedure that included a ring‐opening polyaddition to give poly(amic acid)s, followed by chemical or thermal cyclodehydration. The inherent viscosities of the polyimides ranged from 0.54 to 0.73 and 0.19 to 0.36 dL/g, respectively. All the fluorinated polyimides were soluble in many polar organic solvents, such as N,N‐dimethylacetamide and N‐methylpyrrolidone, and afforded transparent and light‐colored films via solution‐casting. These polyimides showed glass‐transition temperatures in the ranges of 222–280 and 257–351 °C by DSC, softening temperatures in the range of 264–301 °C by thermomechanical analysis, and a decomposition temperature for 10% weight loss above 520 °C both in nitrogen and air atmospheres. The polyimides had low moisture absorptions of 0.23–0.58%, low dielectric constants of 2.84–3.61 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 351–434 nm. Copolyimides derived from the same dianhydrides with an equimolar mixture of 4,4′‐oxydianiline and diamine 2 or 4 were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2416–2431, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号