首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3481篇
  免费   618篇
  国内免费   228篇
化学   950篇
晶体学   9篇
力学   131篇
综合类   42篇
数学   59篇
物理学   1338篇
综合类   1798篇
  2024年   5篇
  2023年   29篇
  2022年   79篇
  2021年   91篇
  2020年   119篇
  2019年   95篇
  2018年   81篇
  2017年   87篇
  2016年   121篇
  2015年   122篇
  2014年   211篇
  2013年   196篇
  2012年   265篇
  2011年   224篇
  2010年   242篇
  2009年   223篇
  2008年   183篇
  2007年   238篇
  2006年   252篇
  2005年   222篇
  2004年   201篇
  2003年   172篇
  2002年   133篇
  2001年   122篇
  2000年   96篇
  1999年   111篇
  1998年   64篇
  1997年   76篇
  1996年   56篇
  1995年   32篇
  1994年   38篇
  1993年   23篇
  1992年   21篇
  1991年   21篇
  1990年   24篇
  1989年   14篇
  1988年   14篇
  1987年   11篇
  1986年   6篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1957年   2篇
排序方式: 共有4327条查询结果,搜索用时 0 毫秒
131.
Cichorium intybus L. (Asteraceae family) is a world-wide grown plant known as chicory. In traditional medicine, this plant is used as diuretic, anti-inflammatory, digestive, cardiotonic and liver tonic. Chromatographic purification of the supercritical fluid extract of aerial parts of C. intybus on silica gel column led to isolation of three compounds: new compound, 28β-hydroxytaraxasterol (I), and two known compounds usnic acid (II) and β-sitosterol (III). Purification of the ethanolic extract of aerial parts of this plant on silica gel column chromatography yielded four compounds: 1,3-dioleylglycerate (IV), sitoindoside II (V), 11β-13-dihydrolactucin (VI) and β-sitosterol-3-O-glucoside (VII). The structures of the isolated compounds were determined by their 1D, 2D NMR and MS spectral data. All the fractions and isolated compounds were tested for cannabinoid and opioid receptor binding, as well as antibacterial, antifungal and antimalarial activities. Compound I showed moderate activity (60.5% displacement) towards CB1 receptor.  相似文献   
132.
A water-soluble polysaccharide TC-DHPA4 with a molecular weight of 8.0 × 105 Da was isolated from tissue-cultured Dendrobium huoshanense by anion exchange and gel permeation chromatography. Monosaccharide analysis revealed that the homogeneous polysaccharide was made up of rhamnose, arabinose, mannose, glucose, galactose and glucuronic acid with a molar ratio of 1.28:1:1.67:4.71:10.43:1.42. The sugar residue sequence analysis based on the GC-MS files and NMR spectra indicated that the backbone of TC-DHPA4 consisted of the repeated units:→6)-β-Galp-(1→6)-β-Galp-(1→4)-β-GlcpA-(1→6)-β-Glcp-(1→6)-β-Glcp-(→. The sugar residue sequences β-Glcp-(1→)-α-Rhap-(1→3)-β-Galp-(1→, β-Glcp-(1→4)-α-Rhap-(1→3)-β-Galp-(1→, β-Galp-(1→6)-β-Manp-(1→3)-β-Galp-(1→, and α-l-Araf-(1→2)-β-Manp-(1→3)-β-Galp-(1→ were identified as the branches attached to the C-3 position of (1→6)-linked galactose in the backbone.  相似文献   
133.
This communication will demonstrate the existence of a thermodynamic molecular switch in the pairwise, sequence‐specific hydrophobic interaction of Ile–Ile, Leu–Ile, Val–Leu, or Ala–Leu over the temperature range of 273–333 K reported by Nemethy and Scheraga in 1962. Based on Chun's development of the Planck–Benzinger methodology, the change in inherent chemical bond energy at 0 K, ΔH°(T0), is 3.0 kcal mol?1 for Ile–Ile, 2.4 for Leu–Ile, 1.8 for Val–Leu, and 1.2 kcal mol?1 for Ala–Leu. The value of ΔH°(T0) decreases as the length of the hydrophobic side chain decreases. It is clear that the strength and stability of the hydrophobic interaction is determined by the packing density of the side chains, with Ala–Leu being the most stable. At 〈Tm〉, the thermal agitation energy, $\int^{T}_{0}\Delta Cp^{\circ}(T)\,dT$, is about five times greater than ΔH°(T0) in each case. Additionally, the thermal agitation energy for the same series, evaluated at 〈Tm〉, decreases in the same order, that is, as the length of the side chain decreases. This pairwise, sequence‐specific hydrophobic interaction is highly similar in its thermodynamic behavior to that of other biological systems, except that the negative Gibbs free energy change minimum at 〈Ts〉 occurs at a considerably higher temperature, 355 K compared to about 300 K. The melting temperature, 〈Tm〉, is also high, 470 K compared to 343 K in a biological system. The implication is that the negative Gibbs free energy minimum at a well‐defined 〈Ts〉 has it origin in the hydrophobic interactions, which are highly dependent on details of molecular structure. In addition to the four specific dipeptide interactions described, we have shown in our unpublished work the existence of a thermodynamic molecular switch in the interactions of 32 dipeptides wherein a change of sign in ΔCp°(T)reaction leads to a true negative minimum in the Gibbs free energy of reaction, and hence, a maximum in the related Keq. Indeed, all interacting biological systems that we have thus far examined using the Planck–Benzinger approach point to the universality of thermodynamic molecular switches. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   
134.
Sulfenic acid (HSOH, 1 ) has been synthesized in the gas‐phase by low‐pressure high‐temperature (1150 °C) pyrolysis of di‐tert‐butyl sulfoxide (tBu2SO, 2 ) and characterized by means of matrix isolation and gas‐phase IR spectroscopy. High‐level coupled‐cluster (CC) calculations (CCSD(T)/cc‐pVTZ and CCSD(T)/cc‐pVQZ) support the first identification of the gas‐phase IR spectrum of 1 and enable its spectral characterization. Five of the six vibrational fundamentals of matrix‐isolated 1 have been assigned, and its rotational‐resolved gas‐phase IR spectrum provides additional information on the O–H and S–H stretching fundamentals. Investigations of the pyrolysis reaction by mass spectrometry, matrix isolation, and gas‐phase FT‐IR spectroscopy reveal that, up to 500 °C, 2 decomposes selectively into tert‐butylsulfenic acid, (tBuSOH, 3 ), and 2‐methylpropene. The formation of the isomeric sulfoxide (tBu(H)SO, 3 a ) has been excluded. Transient 3 has been characterized by a comprehensive matrix and gas‐phase vibrational IR study guided by the predicted vibrational spectrum calculated at the density functional theory (DFT) level (B3LYP/6‐311+G(2d,p)). At higher temperatures, the intramolecular decomposition of 3 , monitored by matrix IR spectroscopy, yields short‐lived 1 along with 2‐methylpropene, but also H2O, and most probably sulfur atoms. In addition, HSSOH ( 6 ), H2, and S2O are found among the final pyrolysis products observed at 1150 °C in the gas phase owing to competing intra‐ and intermolecular decomposition routes of 3 . The decomposition routes of the starting compound 2 and of the primary intermediate 3 are discussed on the basis of experimental results and a computational study performed at the B3LYP/6‐311G* and second‐order Møller–Plesset (MP2/6‐311G* and RI‐MP2/QZVPP) levels of theory.  相似文献   
135.
Three visible-light responsive photoswitches are reported, azobis(1-methyl-benzimidazole) ( 1 ), azobis(benzoxazole) ( 2 ) and azobis(benzothiazole) ( 3 ). Photostationary distributions are obtained upon irradiation with visible light comprising approximately 80 % of the thermally unstable isomer, with thermal half-lives up to 8 min and are mostly invariant to solvent. On protonation, compound 1 H+ has absorption extending beyond 600 nm, allowing switching with yellow light, and a thermal half-life just under 5 minutes. The two isomers have significantly different pKa values, offering potential as a pH switch. The absorption spectra of 2 and 3 are insensitive to acid, although changes in the thermal half-life of 3 indicate more basic intermediates that significantly influence the thermal barrier to isomerization. These findings are supported by high-level ab initio calculations, which validate that protonation occurs on the ring nitrogen and that the Z isomer is more basic in all cases.  相似文献   
136.
137.
Isolation and identification of nondestructive desulfurization bacterium   总被引:3,自引:0,他引:3  
A nondestructive desulfurization microorganism has been isolated. The metabolism product analyses show that the strain can be a kind of biocatalyst to oxidize dibenzothiophene (DBT) into 2-hydroxydiphenyl (HBP), therefore the sulfur in DBT is removed selectively. The 16SrRNA information, cell wall analysis, physical, biochemical properties and morphological properties suggest that the isolated strain is Rhodococcus erythropolis. The strain can grow in the basal salts medium (BSM) that DBT concentration is no more than 10 mmol/L, and the optimal DBT concentration for growth is 1 mmol/L, however, the optimal DBT concentration for desulfurization is 0.5 mmol/L. The further research shows that the strain can also desulfur some other or-ganosulfur-containing compounds such as thianaphthene, phenyl sulfide and 4,6-dimethyldiben-zothiophene (4,6-DMDBT).  相似文献   
138.
139.
A key feature of resorcin[4]arene cavitands is their ability to switch between a closed/contracted (Vase ) and an open/expanded (Kite ) conformation. The mechanism and dynamics of this interconversion remains, however, elusive. In the present study, the Vase ‐Kite transitions of a quinoxaline‐based and of a dinitrobenzene‐based resorcin[4]arene are investigated using molecular dynamics (MD) simulations in three environments (vacuum, chloroform, and toluene) and at three temperatures (198.15, 248.15, and 298.15 K). The challenge of sampling the Vase ‐Kite transition, which occurs experimentally on the millisecond time scale, is overcome by calculating relative free energies using ball‐and stick local elevation umbrella sampling (B&S‐LEUS) to enhance the statistics on the relevant states and to promote interconversion transitions. Associated unbiased MD simulations also evidence for the first time a complete Vase ‐to‐Kite transition, as well as transitions between degenerate Kite 1 and Kite 2 forms and solvent‐exchange events. The calculated Vase ‐to‐Kite free‐energy changes ΔG are in qualitative agreement with the experimental magnitudes and trends. The level of quantitative agreement is, however, limited by the force‐field accuracy and, in particular, by the approximate treatment of intramolecular interactions at the classical level. The results are in line with a less stable Vase state for the dinitrobenzene compared to the quinoxaline compound, and a negative entropy change ΔS for the Vase ‐to‐Kite transition of the latter compound. Relative free energies calculated for intermediates also suggest that the Vase ‐Kite transition does not follow a concerted mechanism, but an asynchronous one with sequential opening of the flaps. In particular, the conformation involving two adjacent flaps open in a parallel direction (cis‐p) represents a likely intermediate, which has not been observed experimentally to date.  相似文献   
140.
This work demonstrates how modulating hydrogen bonding between intermolecular, bifurcated, and intramolecular interactions can be used to tune the structural, electronic, and photophysical properties of cyclopropenium ions and their respective fluorophores. The basis of this switchability was examined using X-ray diffraction analysis, 1H NMR spectroscopy, DFT calculations, and fluorescence spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号