首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5525篇
  免费   345篇
  国内免费   227篇
化学   3180篇
晶体学   11篇
力学   161篇
综合类   28篇
数学   59篇
物理学   820篇
综合类   1838篇
  2024年   11篇
  2023年   31篇
  2022年   59篇
  2021年   78篇
  2020年   82篇
  2019年   77篇
  2018年   93篇
  2017年   125篇
  2016年   112篇
  2015年   166篇
  2014年   191篇
  2013年   259篇
  2012年   395篇
  2011年   285篇
  2010年   215篇
  2009年   283篇
  2008年   264篇
  2007年   383篇
  2006年   327篇
  2005年   283篇
  2004年   325篇
  2003年   269篇
  2002年   216篇
  2001年   170篇
  2000年   154篇
  1999年   144篇
  1998年   137篇
  1997年   130篇
  1996年   113篇
  1995年   123篇
  1994年   77篇
  1993年   97篇
  1992年   85篇
  1991年   61篇
  1990年   67篇
  1989年   47篇
  1988年   41篇
  1987年   18篇
  1986年   15篇
  1985年   20篇
  1984年   13篇
  1983年   9篇
  1982年   10篇
  1981年   15篇
  1980年   8篇
  1979年   7篇
  1978年   7篇
排序方式: 共有6097条查询结果,搜索用时 0 毫秒
131.
A chemiluminescence method for the determination of folic acid by the sodium hypochlorite–folic acid–semicarbazide hydrochloride system with a new flow injection technique has been established. The new method can perform simple, sensitive and rapid determinations of folic acid. The response to the concentration of folic acid, in the range of 1.0×10−75.0×10−5 g/ml, is linear. The relative standard deviation of the method is 2.3% (Cs=4.0×10−6 g/ml, n=11). The detection limit is 2.7×10−8 g/ml. This method is suitable for automatic and continuous analysis, and has been successfully tested for the determination of folic acid in a folic acid tablet.  相似文献   
132.
Bismuth as BiCl4 and BH4 ware successively retained in a column (150 mm × 4 mm, length × i.d.) packed with Amberlite IRA-410 (strong anion-exchange resin). This was followed by passage of an injected slug of hydrochloric acid resulting in bismuthine generation (BiH3). BiH3 was stripped from the eluent solution by the addition of a nitrogen flow and the bulk phases were separated in a gas–liquid separator. Finally, bismutine was atomized in a quartz tube for the subsequent detection of bismuth by atomic absorption spectrometry. Different halide complexes of bismuth (namely, BiBr4, BiI4 and BiCl4) were tested for its pre-concentration, being the chloride complexes which produced the best results. Therefore, a concentration of 0.3 mol l−1 of HCl was added to the samples and calibration solutions. A linear response was obtained between the detection limit (3σ) of 0.225 and 80 μg l−1. The R.S.D.% (n = 10) for a solution containing 50 μg l−1 of Bi was 0.85%. The tolerance of the system to interferences was evaluated by investigating the effect of the following ions: Cu2+, Co2+, Ni2+, Fe3+, Cd2+, Pb2+, Hg2+, Zn2+, and Mg2+. The most severe depression was caused by Hg2+, which at 60 mg l−1 caused a 5% depression on the signal. For the other cations, concentrations between 1000 and 10,000 mg l−1 could be tolerated. The system was applied to the determination of Bi in urine of patients under therapy with bismuth subcitrate. The recovery of spikes of 5 and 50 μg l−1 of Bi added to the samples prior to digestion with HNO3 and H2O2 was in satisfactory ranges from 95.0 to 101.0%. The concentrations of bismuth found in six selected samples using this procedure were in good agreement with those obtained by an alternative technique (ETAAS). Finally, the concentration of Bi determined in urine before and after 3 days of treatment were 1.94 ± 1.26 and 9.02 ± 5.82 μg l−1, respectively.  相似文献   
133.
We study a generalized aggregation process in which charged particles diffuse and coalesce randomly on a lattice. For one-dimensional and mean-field models, we show that there exists a statistically-invariant steady state when randomly charged particles are continuously injected. The steady-state charge distribution obeys a power law with the exponent depending both on the type of the injection and on the spatial dimension. The response of the system to a perturbation (i.e., relaxation) is characterized by either a power law decay (t ,1) or a compressed exponential decay [exp(–t ),>1].  相似文献   
134.
Summary The potential of large-volume PTV injection was studied for the analysis of triazine herbicides in water samples. Direct water injection and in-vial extraction were described and compared. Detection limits were between 0.01–0.02 μg L−1 and relative standard deviations were <9%. Both methods are suitable for the analysis of triazines at ppt-level, although in-vial extraction is favourable for water samples with relatively large amounts of matrix components.  相似文献   
135.
A multicommuted flow-through optosensor based on the direct fluorescence measurements of Vitamins B2 and B6 using a non-polar sorbent (C18 silica gel) as solid sensing zone (to accomplish the separation and subsequent preconcentration/detection of the target analytes) have been developed. The proposed flow system was controlled by Java-written home-made software and designed using three-way solenoid valves for independent automated manipulation of sample and carrier solutions. The native fluorescence signal was simultaneously monitored at two pairs of excitation/emission wavelengths (450/519 and 294/395 for B2 and B6, respectively). The separation of the analytes was performed in the detection flow cell, using the differences in the sorption/elution process on the solid support between the two vitamins, due to their different polarity. Using an optimised sampling time, the analytical signal showed linearity in the range 0.01-0.4 and 0.15-3 μg ml−1 with detection limits of 0.003 and 0.045 μg ml−1 for B2 and B6, respectively, obtaining R.S.D. (%) values better than 2% for both analytes. The proposed methodology was applied to different pharmaceutical preparations, obtaining remarkably good results with recoveries ranging from 96 to 107.5%.  相似文献   
136.
In this paper, we describe a new method of automated sample preparation for multiplexed biological analysis systems that use flow cytometry fluorescence detection. In this approach, color-encoded microspheres derivatized to capture particular biomolecules are temporarily trapped in a renewable surface separation column to enable perfusion with sample and reagents prior to delivery to the detector. This method provides for separation of the biomolecules of interest from other sample matrix components as well as from labeling solutions. After sample preparation, the beads can be released from the renewable surface column and delivered to a flow cytometer for direct on-bead analysis one bead at a time. Using mixtures of color-encoded beads derivatized for various analytes yields suspension arrays for multiplexed analysis. Development of this approach required a new technique for automated capture and release of the color-encoded microspheres within a fluidic system. We developed a method for forming a renewable filter and demonstrate its use for capturing microspheres that are too small to be easily captured in previous flow cells for renewable separation columns. The renewable filter is created by first trapping larger beads in the flow cell, and then smaller beads are captured either within or on top of the bed of larger beads. Both the selective microspheres and filter bed are automatically emplaced and discarded for each sample. A renewable filter created with 19.9 μm beads was used to trap 5.6 μm optically encoded beads with trapping efficiencies of 99%. The larger beads forming the renewable filter did not interfere with the detection of color-encoded 5.6 μm beads by the flow cytometer fluorescence detector. The use of this method was demonstrated with model reactions for a variety of bioanalytical assay types including a one-step capture of a biotinylated label on Lumavidin beads, a two-step sandwich immunoassay, and a one-step DNA binding assay. A preliminary demonstration of multiplexed detection of two analytes using color-encoded beads was also demonstrated. The renewable filter for creating separation columns containing optically encoded beads provides a general platform for coupling renewable surface methods for sample preparation and analyte labeling with flow cytometry detectors for suspension array multiplexed analyses.  相似文献   
137.
A three-layer poly(dimethylsiloxane) (PDMS)/glass microfluidic system for performing on-chip solid-phase enzymatic reaction and chemiluminescence (CL) reaction was used for the determination of glucose as a model analyte. A novel method for the immobilization of controlled-pore-glass based reactive particles on PDMS microreactor beds was developed, producing an on-chip solid-phase reactor that featured large reactive surface and low flow impedance. Efficient mixing of reagent/sample/carrier streams was achieved by incorporating chaotic mixer structures in the microfluidic channels. A conventional sequential injection (SI) system was adapted for direct coupling with the microfluidic system, and combined with hydrostatic delivery of reagents to achieve efficient and reproducible sample introduction at 10 μl levels. A detection limit of 10 μM glucose (3σ), and a precision of 3.1% RSD (n=7, 0.2 mM glucose) were obtained using the SI-microfluidic-CL system integrated with a glucose oxidase (GOD) reactor. Carryover was <5% at a throughput of 20 samples/h.  相似文献   
138.
A robust flow injection (FI) on-line liquid-liquid extraction (LLE) preconcentration/separation system associated with a newly designed gravitational phase separator, coupled to flame atomic absorption spectrometry (FAAS) was developed. The performance of the system was illustrated for cadmium determination at the μg l−1 level. The non-charged cadmium complex with ammonium pyrrolidine dithiocarbamate (APDC) was extracted on-line into isobutyl methyl ketone (IBMK). The organic phase was effectively separated from a large volume of aqueous phase and is led into a 100 μl loop of an injection valve before its introduction into the nebulizer. The system was optimized and offered good performance characteristics with unlimited life time of phase separator, greater flow rate ratios and improved flexibility, as compared with other solvent extraction preconcentration systems. With a sampling frequency of 33 h−1, the enhancement factor was 155, the detection limit was 0.02 μg l−1, the relative standard deviation was 3.2% at 2.0 μg l−1 Cd concentration level and the calibration curve was linear over the concentration range 0.06-6.0 μg l−1. The accuracy of the proposed method was evaluated by analyzing a certified reference material of water and by recovery measurements on spiked samples. Finally, it was successfully applied to the analysis of tapwater, river and seawater samples.  相似文献   
139.
Continuous ultrasound-assisted extraction has been coupled with preconcentration and flame atomic absorption spectrometry for the determination of cadmium and lead in mussel samples. Experimental designs were used for the optimisation of the leaching and preconcentration steps. The use of diluted nitric acid as extractant in the continuous mode at a flow rate of 3.5 ml min−1 and room temperature was sufficient for quantitative extraction of these trace metals. A minicolumn containing a chelating resin (Chelite P, with aminomethylphosphoric acid groups) was proved as an excellent material for the quantitative preconcentration of cadmium and lead prior to their flame atomic absorption detection. A flow injection manifold was used as interface for coupling the three analytical steps, which allowed the automation of the whole analytical process. A good precision of the whole procedure (2.0 and 2.3%), high enrichment factors (20.5 and 11.8) and a detection limit of 0.011 and 0.25 μg g−1 for cadmium and lead, respectively, were obtained for 80 mg of sample. The sample throughputs were ca. 16 and 14 samples h−1 for cadmium and lead, respectively. The accuracy of the analytical procedures was verified by using a standard reference material (BCR 278-R, mussel tissue) and the results were in good agreement with the certified values. The method was successfully applied to the determination of trace amounts of cadmium and lead in mussel samples from the coast of Galicia (NW, Spain).  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号