首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3211篇
  免费   667篇
  国内免费   316篇
化学   2975篇
晶体学   6篇
力学   130篇
综合类   17篇
数学   121篇
物理学   172篇
综合类   773篇
  2024年   9篇
  2023年   39篇
  2022年   90篇
  2021年   103篇
  2020年   221篇
  2019年   168篇
  2018年   193篇
  2017年   139篇
  2016年   220篇
  2015年   223篇
  2014年   244篇
  2013年   318篇
  2012年   234篇
  2011年   228篇
  2010年   186篇
  2009年   167篇
  2008年   190篇
  2007年   183篇
  2006年   187篇
  2005年   135篇
  2004年   127篇
  2003年   125篇
  2002年   87篇
  2001年   74篇
  2000年   44篇
  1999年   27篇
  1998年   23篇
  1997年   42篇
  1996年   27篇
  1995年   18篇
  1994年   23篇
  1993年   20篇
  1992年   17篇
  1991年   11篇
  1990年   12篇
  1989年   7篇
  1988年   5篇
  1987年   5篇
  1986年   9篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
排序方式: 共有4194条查询结果,搜索用时 515 毫秒
91.
A green method for the synthesis of supported Pd nanoparticles (NPs) using pine needle extract as the reducing agent and the extracted residue of pine needle (RPN) as the carrier is described. The Pd/RPN nanocomposites were characterized using Fourier transform infrared, UV–visible, inductively coupled plasma atomic emission and X‐ray photoelectron spectroscopies, transmission electron microscopy and X‐ray diffraction. The spherical Pd NPs had a mean particle size of 3.25 nm and were evenly distributed on the RPN surface. More importantly, the Pd/RPN nanocomposite, as a heterogeneous catalyst, presented superior catalytic activity for the Suzuki coupling reaction. The yield of the reaction of 4‐bromotoluene with phenylboronic acid catalyzed by Pd0.03/RPN reached 98% with low Pd loading (0.1 mmol%) at room temperature for 30 min. In addition, the catalyst could be easily separated by centrifugation and reused at least six times without significant loss of activity.  相似文献   
92.
Metal‐free fullerene (C60) was found to be an effective catalyst for the reduction of azo groups in basic aqueous solution under UV irradiation in the presence of NaBH4. Use of NaBH4 by itself is not sufficient to reduce the azo dyes without the assistance of a metal catalyst such as Pd and Ag. Experimental and theoretical results suggest that C60 catalyzes this reaction by using its vacant orbital to accept the electron in the bonding orbital of azo dyes, which leads to the activation of the N?N bond. UV irradiation increases the ability of C60 to interact with electron‐donor moieties in azo dyes.  相似文献   
93.
Tungstate salt with imidazolium framework is found to be a recoverable and heterogeneous system favouring the highly selective oxidation of primary benzylic alcohols to corresponding aldehydes with 30% H2O2 as a green oxidant under neutral aqueous reaction conditions. Furthermore, in order to demonstrate the recyclability of the catalyst, it was recovered and efficiently reused in seven succeeding reaction cycles without any significant loss. The use of green solvent, very short reaction time with excellent yields and recyclability of the catalyst make this protocol highly advantageous.  相似文献   
94.
The purpose of this work was to synthesize and characterize a new magnetic polymer nanosphere‐supported palladium(II) acetate catalyst for reactions requiring harsh conditions. In this regard, an air‐stable, moisture‐stable and highly efficient heterogenized palladium was synthesized by the coordination of palladium(II) acetate with poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)‐grafted modified magnetic nanoparticles with a core–shell structure. The structure of the newly developed catalyst was characterized using various techniques. The catalytic activity of the resultant nano‐organometallic catalyst was evaluated in Mizoroki–Heck and Suzuki–Miyaura reactions to afford the corresponding coupling products in good to excellent yields. High selectivity as well as outstanding turnover number (14 143, 4900) and turnover frequency (28 296, 7424) values were recorded for the catalyst in Suzuki–Miyaura and Mizoroki–Heck reactions, respectively. Magnetic separation and recycling of the catalyst for at least six runs became possible without any significant loss of efficiency or any detectable palladium leaching.  相似文献   
95.
Mixed valent Pd(0)/Pd(II) nano‐sized aggregates supported onto a chemically robust layered zirconium carboxyphosphonate framework is prepared and its catalytic activity in Suzuki‐Miyaura cross coupling reaction is explored. The exceptionally high catalytic efficacy of the heterogeneous catalyst in Suzuki‐Miyaura cross coupling reaction is signified by remarkably short reaction time 2 minutes and high turnover frequency of 1.3 x 104 hr?1. The catalyst can be recycled several times without significant loss of catalytic efficacy, while spectroscopic, structural and microscopic investigations suggest the integrity of the catalyst even after fifth catalytic cycle. The unique ability of the zirconium carboxyphosphonate framework to interact strongly with palladium in dual Pd(0)/Pd(II) oxidation states has been attributed to this remarkable augmentation of catalytic efficacy.  相似文献   
96.
A practical heterogeneous palladium‐catalyzed carbonylative Suzuki coupling of aryl iodides with arylboronic acids under carbon monoxide gas‐free conditions has been developed using a bidentate phosphino‐functionalized magnetic nanoparticle‐immobilized palladium(II) complex as catalyst. Formic acid was utilized as the carbon monoxide source with dicyclohexylcarbodiimide as the activator, and a wide variety of biaryl ketones were generated in moderate to high yields. The new heterogeneous palladium catalyst can be prepared via a simple procedure and can easily be separated from a reaction mixture by simply applying an external magnet and recycled up to 10 times without any loss of activity.  相似文献   
97.
For the first time, a novel, straightforward and inexpensive route for immobilization of metals in Schiff base complex form is reported applying 2,4‐toluenediisocyanate as a precursor of primary amine group. A nickel(II) Schiff base complex supported on nano‐TiO2 was designed and synthesized as an effective heterogeneous nanocatalyst for organic reactions, and well characterized using various techniques such as Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray analysis and thermogravimetric analysis. The catalytic efficiency of the complex was evaluated in selective oxidation of sulfide to sulfoxide by hydrogen peroxide as an oxidant under solvent‐free conditions at room temperature, which successfully resulted in high yield and high conversion of products. Effective factors including solvent type, oxidant and catalyst amount were also optimized. The catalyst shows outstanding reusability and could be impressively recovered for six consecutive cycles without significant change of its catalytic efficiency.  相似文献   
98.
A fast and efficient eco‐friendly two‐step preparation of a palladium‐containing mesoporous carbon catalyst ( C1 ) from green and readily available carbon precursors (phloroglucinol and glyoxal), a porogen template (pluronic F‐127) and PdCl2 is described. Catalyst C1 contains ultra‐small Pd nanoparticles (1.2 nm) uniformly dispersed in the carbon network and shows an outstanding activity for Suzuki‐Miyaura reactions in pure water: extremely low amounts of palladium (10 μequiv. in most cases) are sufficient to afford almost palladium‐free products (containing <0.25 ppm of precious metal without further purification steps).  相似文献   
99.
In this work, a magnetic hybrid dichromate nanocomposite with triphenylphosphine surface modified superparamagnetic iron oxide nanoparticles (SPIONs) as a recyclable nanocatalyst was designed, prepared and characterized by Fourier transform infrared spectroscopy (FT‐IR) spectra, X‐ray diffraction (XRD) pattern analysis, vibrating sample magnetometer (VSM) curves, X‐ray fluorescence (XRF) analysis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images and dynamic light scattering (DLS) analysis. Then, it was used in a green and efficient procedure for one‐pot multicomponent synthesis of polyhydroquinoline derivatives by the condensation of aldehydes, dimedone or 1,3‐cyclohexadione, ethyl acetoacetate and ammonium acetate. This protocol includes some new and exceptional advantages such as short reaction times, low catalyst loading, high yields, solvent‐free and room temperature conditions, easy separation and reusability of the catalyst.  相似文献   
100.
Fe3O4@SiO2@propyltriethoxysilane@o‐phenylendiamine as an environmentally‐benign functionalized silica‐coated magnetic organometallic nanomaterial has been synthesized and characterized by Fourier transforms infrared (FT‐IR) spectroscopy, scanning electron microscopy (SEM) images and energy dispersive X‐ray (EDX) and vibrating sample magnetometer (VSM) analyses. Then, its catalytic activity was investigated for the one‐pot three‐component condensation reaction between dimedone, malononitrile and various substituted aromatic aldehydes to afford the corresponding 2‐amino‐4H‐chromene derivatives under mild reaction conditions. This nanocatalyst can be easily recovered from the reaction mixture by using a magnet and reused for at least five times without significant decrease in catalytic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号