首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1428篇
  免费   222篇
  国内免费   85篇
化学   1064篇
晶体学   11篇
力学   63篇
综合类   4篇
数学   12篇
物理学   198篇
综合类   383篇
  2024年   7篇
  2023年   9篇
  2022年   25篇
  2021年   23篇
  2020年   60篇
  2019年   46篇
  2018年   34篇
  2017年   39篇
  2016年   69篇
  2015年   79篇
  2014年   99篇
  2013年   130篇
  2012年   102篇
  2011年   92篇
  2010年   73篇
  2009年   79篇
  2008年   84篇
  2007年   103篇
  2006年   113篇
  2005年   70篇
  2004年   92篇
  2003年   55篇
  2002年   30篇
  2001年   29篇
  2000年   24篇
  1999年   21篇
  1998年   23篇
  1997年   16篇
  1996年   13篇
  1995年   14篇
  1994年   14篇
  1993年   13篇
  1992年   7篇
  1991年   9篇
  1990年   12篇
  1989年   8篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1982年   1篇
  1980年   1篇
  1969年   1篇
排序方式: 共有1735条查询结果,搜索用时 15 毫秒
61.
When two benzene rings are fused to a tetraaryl‐o‐quinodimethane skeleton, sterically hindered helical molecules 1 acquire a high thermodynamic stability. Because the tetraarylbutadiene subunit contains electron‐donating alkoxy groups, 1 undergo reversible two‐electron oxidation to 2 2+, which can be isolated as deeply colored stable salts. Intramolecular transfer of the point chirality (e.g., sec‐butyl) on the aryl groups to helicity induces a diastereomeric preference in dications 2 b 2+ and 2 c 2+, which represents an efficient method for enhancing circular‐dichroism signals. Thus, those redox pairs can serve as new electrochiroptical response systems. X‐ray analysis of dication 2 2+ revealed π–π stacking interaction of the diarylmethylium moieties, which is also present in solution. The stacking geometry is the key contributor to the chirosolvatochromic response.  相似文献   
62.
Dynamic helicity in a folded macrocycle and control of the helical preference are described. We designed macrocycle 1 with a dual mode of folding through the integration of two flexible units that are arranged twice to form a cyclic structure. As a folding unit, we used a terephthalamide skeleton and a Z‐shaped hydrocarbon: the former acted as a control unit to induce a preference of a particular sense of dynamic helicity and the latter was just a spacer. A terephthalamide unit provided a binding site for capturing a ditopic hydrogen‐bonding guest when it adopted helically folded syn forms (M/P). Thus, only the terephthalamide unit controlled the helical sense of dynamic helicity in a folded macrocycle through the supramolecular transmission of chirality upon complexation with a chiral ditopic guest. In addition, chirality on a host could also contribute to the control of the helical preference in a folded macrocycle, which led to exceptionally enhanced chiroptical signals.  相似文献   
63.
Chiral monolithic absorbent is successfully constructed for the first time by using optically active helical‐substituted polyacetylene and graphene oxide (GO). The preparative strategy is facile and straightforward, in which chiral‐substituted acetylene monomer (Ma), cross‐linker (Mb), and alkynylated GO (Mc) undergo copolymerization to form the desired monolithic absorbent in quantitative yield. The resulting monoliths are characterized by circular dichroism, UV–vis absorption, scanning electron microscopy (SEM), FT‐IR, Raman, energy‐dispersive spectrometer (EDS), X‐ray diffraction (XRD), Brunauer–Emmett–Teller (BET), XPS, and thermogravimetric analysis (TGA) techniques. The polymer chains derived from Ma form chiral helical structures and thus provide optical activity to the monoliths, while GO sheets contribute to the formation of porous structures. The porous structure enables the monolithic absorbents to demonstrate a large swelling ratio in organic solvents, and more remarkably, the helical polymer chains provide optical activity and further enantio‐differentiating absorption ability. The present study establishes an efficient and versatile methodology for preparing novel functional materials, in particular monolithic chiral materials based on substituted polyacetylene and GO.

  相似文献   

64.
Magnetic helical microrobots swimming at low Reynolds numbers have attracted much interest because of their great potentials for biomedical applications. However, to endow them with sophisticated function integration toward targeted disease treatment still remains a major challenge. Here, we proposed a novel strategy of using Spirulina scaffolds to fabricate biohybrid magnetic helical microrobot (BMHM) with enhanced photothermal performance to fight against cancer cells and pathogenic bacteria. For the first time, CuS nanodots were densely and uniformly loaded intracellularly inside Spirulina cells after permeabilization, and Fe3O4 nanoparticles were subsequently deposited on the cell walls for magnetization. The BMHMs could be actuated forward at a high velocity and flexibly steered under rotating magnetic fields. Rapid and great photothermal temperature raise with robust cycling stability was achieved under 808 nm near-infrared laser irradiation. The BMHMs showed good biocompatibility with minor toxicity to HeLa cancer cells and Escherichia coli bacteria. Moreover, significant photothermal performance was further verified via a series of experiments for anticancer therapy and bacteria killing. Because of the remarkable features and facile cost-effective fabrication, the BMHMs demonstrated great potentials as an integrated microrobot platform for future anticancer and antibacteria applications.  相似文献   
65.
Helical carbon and graphite films from helical poly(3,4‐ethylenedioxythiophene) (H‐PEDOT) films synthesized through electrochemical polymerization in a chiral nematic liquid‐crystal (N*‐LC) field are prepared. The microscope investigations showed that the H‐PEDOT film synthesized in the N*‐LC has large domains of one‐handed spiral morphology consisting of fibril bundles. The H‐PEDOT films exhibited distinct Cotton effects in circular dichroism spectra. The highly twisted N*‐LC with a helical pitch of smaller than 1 μm produced the H‐PEDOT film with a highly ordered morphology. The spiral morphologies with left‐ and right‐handed screws were observed for the carbon films prepared from the H‐PEDOT films at 800 °C and were well correlated with the textures and helical pitches of the N*‐LCs. The spiral morphologies of the precursors were also retained even in the graphite films prepared from the helical carbon films at 2600 °C.  相似文献   
66.
Multidimensional nano‐heterostructures (NHSs) that have unique dimensionality‐dependent integrative and synergic effects are intriguing but still underdeveloped. Here, we report the first helical 1D/2D epitaxial NHS between CdS and ZnIn2S4. Experimental and theoretical studies reveal that the mismatches in lattice and dangling bonds between 1D and 2D units govern the growth procedure. The resulting well‐defined interface induces the delocalized interface states, thus facilitate the charge transfer and enhance the performance in the photoelectrochemical cells. We foresee that the mechanistic insights gained and the electronic structures revealed would inspire the design of more complex 1D/2D NHSs with outstanding functionalities.  相似文献   
67.
Peptides, the fundamental building units of biological systems, are chiral in molecular scale as well as in spatial conformation. Shells are exquisite examples of well‐defined chiral structures produced by natural biomineralization. However, the fundamental mechanism of chirality expressed in biological organisms remains unclear. Here, we present a system that mimics natural biomineralization and produces enantiopure chiral inorganic materials with controllable helicity. By tuning the hydrophilicity of the amphiphilic peptides, the chiral morphologies and mesostructures can be changed. With decreasing hydrophilicity of the amphiphilic peptides, we observed that the nanostructures changed from twisted nanofibers with a hexagonal mesostructure to twisted nanoribbons with a lamellar mesostructure, and the extent of the helicity decreased. Defining the mechanism of chiral inorganic materials formed from peptides by noncovalent interactions can improve strategies toward the bottom‐up synthesis of nanomaterials as well as in the field of bioengineering.  相似文献   
68.
A series of quinoxaline‐fused [7]carbohelicenes (HeQu derivatives) was designed and synthesized to evaluate their structural and photophysical properties in the crystal state. The quinoxaline units were expected to enhance the light‐emitting properties and to control the packing structures in the crystal. The electrochemical and spectroscopic properties and excited‐state dynamics of these compounds were investigated in detail. The first oxidation potentials of HeQu derivatives are approximately the same as that of unsubstituted reference [7]carbohelicene (Heli), whereas their first reduction potentials are shifted to the positive by about 0.7 V. The steady‐state absorption, fluorescence, and circular dichroism spectra also became redshifted compared to those of Heli. The molecular orbitals and energy levels of the HOMO and LUMO states, calculated by DFT methods, support these trends. Moreover, the absolute fluorescence quantum yields of HeQu derivatives are about four times larger than that of Heli. The structural properties of the aggregated states were analyzed by single‐crystal analysis. Introduction of appropriate substituents (i.e., 4‐methoxyphenyl) in the HeQu unit enabled the construction of one‐dimensional helical columns of racemic HeQu derivatives in the crystal state. Helix formation is based on intracolumn π‐stacking between two neighboring [7]carbohelicenes and intercolumn CH ??? N interaction between a nitrogen atom of a quinoxaline unit and a hydrogen atom of a helicene unit. The time‐resolved fluorescence spectra of single crystals clearly showed an excimerlike delocalized excited state owing to the short distance between neighboring [7]carbohelicene units.  相似文献   
69.
A theoretical study of Li90P90, which possesses a circular double‐helix structure that resembles the Watson–Crick DNA structure, is reported. This is a new bonding motif in inorganic chemistry. The calculations show that the molecule might become synthesized and that it could be a model for other inorganic species which possess a double‐helix structure.  相似文献   
70.
A peptide model is a physical system containing a CONH group, the simplest being HCONHCH3, N‐methylformamide (NMF). We have discovered that NMF and N‐methylacetamide (NMA), which form hydrogen‐bonded oligomers in thin films on a planar AgX fiber, display infrared (IR) spectra with peaks like those of polypeptide helices. Structures can be assigned by their amide I maxima near 1672 (310), 1655 (310), 1653 (α), 1655 (π), and 1635 cm?1 (π), which are the first IR data for the π‐helix. Sharp peaks are an outcome of immobilization of polar species on the polar surface of silver halides. We report the first use of expanded thin‐film IR spectroscopy, in which plots of every spectrum over the amide I–II range show pauses or slow stages in the increase or decrease of absorption. These are identified as static phases followed by dynamic phases, with the incremental gain or loss of a helix turn. A general theory can be stated for such processes. Density functional calculations show that the NMA α‐helix pentamer (crystal structure geometry) is transformed into a π‐helix‐like form. For the first time, an entire sequence (310‐helix, α‐helix, π‐helix, quasiplanar species) of spectra has been recorded for NMA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号