首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5091篇
  免费   812篇
  国内免费   422篇
化学   4702篇
晶体学   18篇
力学   18篇
综合类   27篇
数学   10篇
物理学   704篇
综合类   846篇
  2024年   10篇
  2023年   64篇
  2022年   124篇
  2021年   176篇
  2020年   242篇
  2019年   186篇
  2018年   165篇
  2017年   174篇
  2016年   286篇
  2015年   324篇
  2014年   408篇
  2013年   517篇
  2012年   413篇
  2011年   396篇
  2010年   305篇
  2009年   317篇
  2008年   320篇
  2007年   276篇
  2006年   259篇
  2005年   226篇
  2004年   173篇
  2003年   155篇
  2002年   93篇
  2001年   65篇
  2000年   64篇
  1999年   86篇
  1998年   52篇
  1997年   80篇
  1996年   68篇
  1995年   58篇
  1994年   54篇
  1993年   39篇
  1992年   29篇
  1991年   35篇
  1990年   30篇
  1989年   17篇
  1988年   20篇
  1987年   9篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   2篇
排序方式: 共有6325条查询结果,搜索用时 15 毫秒
81.
This Concept article provides an elementary discussion of a special class of large‐sized gold compounds, so‐called Au nanoclusters, which lies in between traditional organogold compounds (e.g., few‐atom complexes, <1 nm) and face‐centered cubic (fcc) crystalline Au nanoparticles (typically >2 nm). The discussion is focused on the relationship between them, including the evolution from the Au???Au aurophilic interaction in AuI complexes to the direct Au? Au bond in clusters, and the structural transformation from the fcc structure in nanocrystals to non‐fcc structures in nanoclusters. Thiolate‐protected Aun(SR)m nanoclusters are used as a paradigm system. Research on such nanoclusters has achieved considerable advances in recent years and is expected to flourish in the near future, which will bring about exciting progress in both fundamental scientific research and technological applications of nanoclusters of gold and other metals.  相似文献   
82.
83.
Much effort has gone into generating polyhedral noble metal nanostructures because of their superior electrocatalytic activities for fuel cells. Herein, we report uniform, high-yield icosahedral silver and gold nanoparticles by using a facile one-pot, seedless, water-based approach that incorporates polyvinyl pyrrolidone and ammonia. Electrocatalysis of the oxygen-reduction reaction was carried out in alkaline media to evaluate the performance of the icosahedral nanoparticles. They showed excellent stability and much higher electrocatalytic activity than the spherelike nanoparticles; they display a positive shift in reduction peak potential for O(2) of 0.14 and 0.05 V, while the reduction peak currents of the silver and gold icosahedra are 1.5- and 1.6-fold, respectively, better than the spherelike nanoparticles. More importantly, the icosahedral nanoparticles display electrocatalytic activities comparable with commercial Pt/C electrocatalysts. The facile preparation of icosahedral silver and gold nanoparticles and their superior performance in the oxygen reduction reaction render them attractive replacements for Pt as cathode electrocatalysts in alkaline fuel cells.  相似文献   
84.
In the present study, the flow-through silica, featured with hierarchical pores, i.e., tunable mesopores and penetrable macropores, was attempted as the chromatographic stationary phase matrix to immobilize gold nanoparticles (AuNPs). It was first modified by mercapto groups (named as SiO2-SH), and then by AuNPs (named as SiO2-S-Au). Thanks to the characteristic macropores, the column backpressure of SiO2-S-Au was comparable to SiO2-SH, which effectively overcame the difficulty of high column backpressure upon the nanoparticles were introduced to the chromatographic matrix. Both the reversed-phase and hydrophilic interaction liquid chromatographic performance were observed on these two columns but with different selectivities. Hydrophobic, hydrophilic, hydrogen bond and electrostatic interactions between the SiO2-S-Au stationary phase and analytes could contribute to the retention. The SiO2-S-Au column showed excellent aqueous compatibility by “Stop-flow” test with the relative standard deviations (RSD) of analyte’s k (capacity factor) values from 0.59% to 2.88%. The reproducibility of SiO2-S-Au was acceptable with RSDs of analyte’s k values in the range of 3.13%-5.03%. In addition, compared with the SiO2-SH column, the SiO2-S-Au column had better separation performance and selectivity. The results demonstrated that the flow-through silica was a promising matrix for nanoparticles with low backpressure and different selectivities.  相似文献   
85.
86.
Efficient basic hydrotalcite (HT)‐supported gold nanoparticle (AuNP) catalysts have been developed for the aerobic oxidative tandem synthesis of methyl esters and imines from primary alcohols catalyzed under mild and soluble‐base‐free conditions. The catalytic performance can be fine‐tuned for these cascade reactions by simple adjustment of the Mg/Al atomic ratio of the HT support. The one‐pot synthesis of methyl esters benefits from high basicity (Mg/Al=5), whereas moderate basicity greatly improves imine selectivity (Mg/Al=2). These catalysts outperform previously reported AuNP catalysts by far. Kinetic studies show a cooperative enhancement between AuNP and the surface basic sites, which not only benefits the oxidation of the starting alcohol but also the subsequent steps of the tandem reactions. To the best of our knowledge, this is the first time that straightforward control of the composition of the support has been shown to yield optimum AuNP catalysts for different tandem reactions.  相似文献   
87.
A triazolyl‐di‐ylidene ligand has been used for the preparation of a homodimetallic complex of gold, and a heterodimetallic compound of gold and iridium. Both complexes have been fully characterized and their molecular structures have been determined by means of X‐ray diffraction. The catalytic properties of these two complexes have been evaluated in the reduction of nitroarenes by transfer hydrogenation using primary alcohols. The two complexes afford different reaction products; whereas the AuI–AuI catalyst yields a hydroxylamine, the IrIII–AuI complex facilitates the formation of an imine.  相似文献   
88.
The origin of the peroxidase‐like activity of gold nanoparticles and the impact of surface modification are studied. Furthermore, some influencing factors, such as fabrication process, redox property of the modifier, and charge property of the substrate, are investigated. Compared to amino‐modified or citrate‐capped gold nanoparticles, unmodified gold nanoparticles show significantly higher catalytic activity toward peroxidase substrates, that is, the superficial gold atoms are a contributing factor to the observed peroxidase‐like activity. The different catalytic activities of amino‐modified and citrate‐capped gold nanoparticles toward 3,3′,5,5′‐tetramethylbenzidine (TMB) and 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) diammonium salt (ABTS) show that the charge characteristics of the nanoparticles and the substrate also play an important role in the catalytic reactions.  相似文献   
89.
Photolysis of organic solvent soluble aryl azide‐modified gold nanoparticles (N3‐AuNPs) with a core size of 4.6±1.6 nm results in the generation of interfacial reactive nitrene intermediates. The high reactivity of the nitrenes is utilized to tether the AuNP to the native surface of carbon nanotubes, and reduce graphene oxide and micro‐diamond powder, likely via addition to π‐conjugated carbon skeleton or insertion into the functionalities at the surface, to yield the desired hybrid material without the need for pretreatment of the surface. The AuNP‐covalent hybrid materials are robust in that they survive vigorous washing and sonication. In the absence of photolysis no attachment occurs with the same N3‐AuNP. The nanohybrid AuNP‐nanohybrid materials are characterized using a combination of TEM, powder XRD, XPS and UV/Vis and IR spectroscopies. All of the characterization studies confirm the uniform incorporation of the AuNP on the irradiated substrates.  相似文献   
90.
Since gold clusters have mostly been studied theoretically by using DFT calculations, more accurate studies are of importance. Thus, small neutral and anionic gold clusters (Aun and Aun?, n=4–7) were investigated by means of coupled cluster with singles, doubles, and perturbative triple excitations [CCSD(T)] calculations with large basis sets, and some differences between DFT and CCSD(T) results are discussed. Interesting isomeric structures that have dangling atoms were obtained. Structures having dangling atoms appear to be stable up to n=4 for neutral gold clusters and up to n=7 for anionic clusters. The relative stabilities and electronic properties of some isomers and major structures are discussed on the basis of the CCSD(T) calculations. This accurate structure prediction of small gold clusters corresponding to experimental photoelectron spectral peaks is valuable in the field of atom‐scale materials science including nanocatalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号