首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   5篇
  国内免费   4篇
化学   9篇
晶体学   1篇
力学   36篇
综合类   1篇
数学   14篇
物理学   12篇
综合类   51篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   8篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   9篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2007年   12篇
  2006年   12篇
  2005年   12篇
  2004年   9篇
  2003年   8篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1986年   1篇
  1955年   1篇
排序方式: 共有124条查询结果,搜索用时 9 毫秒
11.
Hybrid composites are promising materials due the possibility of combining the properties of different fiber types with those of the polymeric matrix. The higher number of phases involved in this kind of material and the hydrostatic component of polymer behavior make it unfeasible to use classic models for failure prediction, like the Von Mises or Treska models. In this study, a modified Arcan's device was applied for mechanical characterization of a polymeric blend matrix composite reinforced with randomly oriented continuous fibers (a clutch disc) to generate combined loading conditions. Experimental results were applied in the Von Mises and Drucker-Prager theoretical models for failure prediction. Additionally, scanning electron microscopy (SEM) was applied to analyze the fracture surface. The failure envelope provided by the Drucker-Prager model fit the experimental results, making it a promising tool for predicting the behavior of this type of hybrid composite.  相似文献   
12.
We establish that the kinematic constraints on the steady planar motion of an ideal fiber-reinforced fluid can be consolidated in a single third-order nonlinear equation. Remarkably, this equation admits a solitonic reduction related to the classical sine-Gordon equation. The kinematic conditions in this case admit a novel duality property and a Bäcklund transformation.  相似文献   
13.
Based on the theory of elastic dynamics, multiple scattering of elastic waves and dynamic stress concentrations in fiber-reinforced composite are studied. The analytical expressions of elastic waves in different regions are presented. The mode coefficients of elastic waves are determined in accordance with the continuous conditions of displacement and stress on the boundary of the multi-interfaces. By using the addition theorem of Hankel functions, the formula of scattered wave fields in different local coordinates are transformed into those in one local coordinate to determine the unknown coefficients and dynamic stress concentration factors (DSCFs). The influences of the distance between two inclusions, material properties and structural size on the DSCFs near the interfaces are analyzed. As examples, the numerical results of DSCFs near the interfaces for two kinds of fiber-reinforced composites are presented and discussed. The project supported by the National Natural Science Foundation of China (19972018)  相似文献   
14.
This work is concerned with the homogenization of solids reinforced by aligned parallel continuous fibers or weakened by aligned parallel cylindrical pores and undergoing large deformations. By alternatively exploiting the nominal and material formulations of the corresponding homogenization problem and by applying the implicit function theorem, it is shown that locally homogeneous deformations can be produced in such inhomogeneous materials and form a differentiable manifold. For every macroscopic strain associated to a locally homogeneous deformation field, the effective nominal or material stress–strain relation is exactly determined and connections are also exactly established between the effective nominal and material elastic tangent moduli. These results are microstructure-independent in the sense that they hold irrespectively of the transverse geometry and distribution of the fibers or pores. A porous medium consisting of a compressible Mooney–Rivlin material with cylindrical pores is studied in detail to illustrate the general results. This work was the first time presented at the Euromech Colloqium 464 on “Fiber-reinforced Solids: Constitutive Laws and Instabilities”, September 28–October 1, 2004, Cantabria, Spain.  相似文献   
15.
《Composite Interfaces》2013,20(2):157-169
The method for the formation of adhesive phase onto polyethylene (PE) fiber surface by passage of the PE fiber through hot PE solutions has been investigated for making composite materials reinforced by the PE fibers. When the PE fiber is treated by the low density PE (LDPE) solution in o-xylene in the range of 120 to 135°C, the tensile strength of the PE fiber is maintained at that of the original PE fiber. Adhesive strength between the PE fiber surface and LDPE phase formed on the PE fiber through the hot PE solution is found to be so high that the PE fiber itself is torn off. The application of the present method to PE fiber-reinforced PE composites will be expected.  相似文献   
16.
The results of tests on continuous steel-fiber-reinforced concrete (RC) beams, with and without an external strengthening, are presented. The internal flexural steel reinforcement was designed so that to allow steel yielding before the collapse of the beams. To prevent the shear failure, steel stirrups were used. The tests also included two nonstrengthened control beams; the other specimens were strengthened with different configurations of externally bonded carbon-fiber-reinforced polymer (CFRP) laminates. In order to prevent the premature failure from delamination of the CFRP strengthening, a wrapping was also applied. The experimental results obtained show that it is possible to achieve a sufficient degree of moment redistribution if the strengthening configuration is chosen properly, confirming the results provided by two simple numerical models. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 5, pp. 667–686, September–October, 2007.  相似文献   
17.
A three-dimensional computer simulation has been used to predict crystallization kinetics and crystalline morphology in composite materials that are based on crystallizable thermoplastics. Reinforcing fibers in three-dimensional simulations show similar behavior to those in two-dimensional simulations; fibers suppress crystallization relative to an unreinforced polymer since they constrain spherulitic growth by an impingement mechanism, and also enhance crystallization by providing added surface nucleation sites. The effects of varying controlling parameters on crystallization kinetics and morphology are qualitatively the same as those observed in the two-dimensional case. The relative bulk and fiber nucleation denisities, in addition to the fiber volume fraction, fiber diameter, and spherulitic growth rate control the crystallization kinetics and crystalline morphology that develop in reinforced thermoplastic composites. It is more difficult to achieve the transcrystalline morphology in slices of three-dimensional composites than it is in two-dimensional composites because nuclei in 3-D systems are not constrained to positions in or near a 2-D plane. © 1993 John Wiley & Sons, Inc.  相似文献   
18.
Photothermal techniques and effective medium method combining with image method are applied to investigate the non-steady effective thermal properties of semi-infinite unidirectional fiber-reinforced composites, and the effect of the semi-infinite surface on the non-steady effective thermal properties is considered. The dispersion relation for the effective wave number in the semi-infinite random composites is derived. The image method is used to satisfy the adiabatic boundary condition at the semi-infinite surface. The numerical solutions of the non-steady effective thermal properties are obtained by using an iterative scheme. Analyses show that the variation of the non-steady effective thermal properties near the semi-infinite surface is significantly different from those of the infinite composite structure. The effects of the circular frequency of thermal waves, the volume fraction of fibers, and the properties contrast ratio on the maximum non-steady effective properties near the surface are examined. Comparison with the steady case is also given.  相似文献   
19.
During the manufacturing process of multilayered fiber-reinforced composites with variable fiber orientations, residual stresses build up in these composites due to the directional expansion of single unidirectionally reinforced layers. Depending on the laminate lay-up, the inhomogeneous residual stresses, which are caused by thermal effects, moisture absorption, and chemical shrinkage, can lead to large multistable out-of-plane deformations. Instead of avoiding these curvatures, they can be advantageously used for technical applications following the near-net-shape technology. In order to adjust the deformations to the technical requirements, genetic algorithms in combination with a nonlinear calculation method have been developed, which can purposefully adapt the laminate lay-up depending on the loading and process parameters.  相似文献   
20.
孔梯度陶瓷纤维复合膜管的制备及特性   总被引:1,自引:0,他引:1  
陶瓷过滤管具有孔隙率高、耐腐蚀、耐高温、机械强度高、便于清洗、使用寿命长等优点,是高温烟尘处理用的高效过滤元件.本文研制了一种具有梯度孔结构堇青石陶瓷纤维复合膜过滤元件,该过滤元件是由多孔支撑体、过渡层和分离膜层组成.其中支撑体、过渡层和分离层的气孔率分别为35~40;、50~60;和60~70;.文中主要分析了孔梯度陶瓷纤维复合膜管的材料结构和抗热震性能,同时对复合膜管进行含尘气体过滤的冷态模拟试验.对于烟气中粒径大于或等于0.1μm的颗粒,复合膜管的截留率达到99.8;以上.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号