BACKGROUND AND PURPOSE: Functional neuroimaging can distinguish components of the pain experience associated with anticipation to pain from those associated with the experience of pain itself. Anticipation to pain is thought to increase the suffering of chronic pain patients. Inappropriate anxiety, of which anticipation is a component, is also a cause of disability. We present a pharmacological functional magnetic resonance imaging (fMRI) study in which we investigate the selective modulation by midazolam of brain activity associated with anticipation to pain compared to pain itself. METHODS: Eight right-handed male volunteers underwent fMRI combined with a thermal pain conditioning paradigm and midazolam (30 mug/kg) or saline administration on different occasions, with order randomized across volunteers. Volunteers learned to associate a colored light with either painful, hot stimulation or nonpainful, warm stimulation to the back of the left hand. RESULTS: Comparison of the period during thermal stimulation (pain-warm) revealed a network of brain activity commonly associated with noxious stimulation, including activities in the anterior cingulate cortex (ACC), the bilateral insular cortices (anterior and posterior), the thalamus, S1, the motor cortex, the brainstem, the prefrontal cortex and the cerebellum. Comparison of the periods preceding thermal stimulation (anticipation to pain-anticipation to warm) revealed activity principally in the ACC, the contralateral anterior insular cortex and the ipsilateral S2/posterior insula. Detected by a region-of-interest analysis, midazolam reduced the activity associated specifically with anticipation to pain while controlling for anticipation to warm. This was most significant in the contralateral anterior insula (P<.05). There were no significant drug effects on the activity associated with pain itself. CONCLUSION: In identifying a pharmacological effect on activity preceding but not during pain, we have successfully demonstrated an fMRI assay that can be used to study the action of anxiolytic agents in a relatively small cohort of humans. 相似文献
Electrical microstimulation via intracortical electrodes is a widely used method for deducing functions of the brain. In this study, we compared the spatial extent and amplitude of BOLD responses evoked by intracortical electrical stimulation in primary visual cortex with BOLD activations evoked by visual stimulation. The experiments were performed in anesthetized rhesus monkeys. Visual stimulation yielded activities larger than predicted from the well-established visual magnification factor. However, electrical microstimulation yielded an even greater spread of the BOLD response. Our results confirm that the effects of electrical microstimulation extend beyond the brain region expected to be excited by direct current spread. 相似文献
The “direct detection” of neuronal activity by MRI could offer improved spatial and temporal resolution compared to the blood oxygenation level-dependent (BOLD) effect. Here we describe initial attempts to use MRI to detect directly the neuronal currents resulting from spontaneous alpha wave activity, which have previously been shown to generate the largest extracranial magnetic fields. Experiments were successfully carried out on four subjects at 3 T. A single slice was imaged at a rate of 25 images per second under two conditions. The first (in darkness with eyes-closed) was chosen to promote alpha wave activity, while the second (eyes-open viewing a visual stimulus) was chosen to suppress it. The fluctuations of the phase and magnitude of the resulting MR image data were frequency analysed, and tested for the signature of both alpha wave activity and neuronal activity evoked by the visual stimulus.
Regions were found that consistently showed elevated power in fluctuations of the phase of the MR signal, in the frequency range of alpha waves, during the eyes-closed condition. It was conservatively assumed that if oscillations occurred at the same frequency in the magnitude signal from the same region or at the same frequency in the phase or magnitude signal from other regions overlying large vessels or cerebrospinal fluid (CSF), then the phase changes were not due to neuronal activity related to alpha waves. Using these criteria the data obtained were consistent with direct detection of alpha wave activity in three of the four volunteers. No significant MR signal fluctuations due to evoked activity were identified. 相似文献
T2?-weighted blood oxygen level-dependent functional magnetic resonance imaging is adversely affected by susceptibility-induced field gradients in brain regions adjoining air interfaces that cause image distortion and signal dropout. Reducing slice thickness diminishes signal dropout but is accompanied by reduced signal-to-noise ratio (SNR). This study proposes simultaneous excitation of subslices with total width equal to the desired slice thickness, employing alternating Hadamard-encoded radiofrequency pulses coupled with incoherent addition of the subslices to achieve reduction of through-plane dephasing with minimal SNR loss but at the expense of a reduction in temporal resolution. Using a sensory task and hypercapnic challenge with breathholding (BH), results with two subslices per slice and a twofold reduction in temporal resolution show improved activation relative to a conventional acquisition. Average (eight subjects) T-scores in the BH task increased by 16% (P<.0003), and activation extent increased by 12% (not significant). In frontal brain regions, significant improvements in BH activation extent (11.4%, P<.05) and T-scores (18%, P<.0002) were demonstrated. Higher temporal resolution can be achieved by tradeoff of SNR. 相似文献
Although event-related fMRI is able to reliably detect brief changes in brain activity and is now widely used throughout systems and cognitive neuroscience, there have been no previous reports of event-related spinal cord fMRI. This is likely attributable to the various technical challenges associated with spinal fMRI (e.g., imaging a suitable length of the cord, reducing image artifacts from the vertebrae and intervertebral discs, and dealing with physiological noise from spinal cord motion). However, with many of these issues now resolved, the largest remaining impediment for event-related spinal fMRI is a deprived understanding of the spinal cord fMRI signal time course. Therefore, in this study, we used a proton density-weighted HASTE sequence, with functional contrast based on signal enhancement by extravascular water protons (SEEP), and a motion-compensating GLM analysis to (i) characterize the SEEP response function in the human cervical spinal cord and (ii) demonstrate the feasibility of event-related spinal fMRI. This was achieved by applying very brief (1 s) epochs of 22°C thermal stimulation to the palm of the hand and measuring the impulse response function. Our results suggest that the spinal cord SEEP response (time to peak ≈8 s; FWHM ≈4 s; and probably lacking pre- and poststimulus undershoots) is slower than previous estimates of SEEP or BOLD responses in the brain, but faster than previously reported spinal cord BOLD responses. Finally, by detecting and mapping consistent signal-intensity changes within and across subjects, and validating these regions with a block-designed experiment, this study represents the first successful demonstration of event-related spinal fMRI. 相似文献
A detailed theoretical analysis of the free induction decay (FID) and spin echo (SE) MR signal formation in the presence of mesoscopic structure-specific magnetic field inhomogeneities is developed in the framework of the Gaussian phase distribution approximation. The theory takes into account diffusion of nuclear spins in inhomogeneous magnetic fields created by arbitrarily shaped magnetized objects with permeable boundaries. In the short-time limit the FID signal decays quadratically with time and depends on the objects' geometry only through the volume fraction, whereas the SE signal decays as 5/2 power of time with the coefficient depending on both the volume fraction of the magnetized objects and their surface-to-volume ratio. In the motional narrowing regime, the FID and SE signals for objects of finite size decay mono-exponentially; a simple general expression is obtained for the relaxation rate constant deltaR2. In the case of infinitely long cylinders in the motional narrowing regime the theory predicts non-exponential signal decay lnS approximately -tlnt in accordance with previous results. For specific geometries of the objects (spheres and infinitely long cylinders) exact analytical expressions for the FID and SE signals are given. The theory can be applied, for instance, to biological systems where mesoscopic magnetic field inhomogeneities are induced by deoxygenated red blood cells, capillary network, contrast agents, etc. 相似文献
The dorsal stream is a dominant visuomotor pathway that connects the striate and extrastriate cortices to posterior parietal areas. In turn, the posterior parietal areas send projections to the frontal primary motor and premotor areas. This cortical pathway is hypothesized to be involved in the transformation of a visual input into the appropriate motor output. In this study we used functional magnetic resonance imaging (fMRI) of the entire brain to determine the patterns of activation that occurred while subjects performed a visually guided motor task. In nine human subjects, fMRI data were acquired on a 4-T whole-body MR system equipped with a head gradient coil and a birdcage RF coil using aT*2-weighted EPI sequence. Functional activation was determined for three different tasks: (1) a visuomotor task consisting of moving a cursor on a screen with a joystick in relation to various targets, (2) a hand movement task consisting of moving the joystick without visual input, and (3) a eye movement task consisting of moving the eyes alone without visual input. Blood oxygenation level-dependent (BOLD) contrast-based activation maps of each subject were generated using period cross-correlation statistics. Subsequently, each subject's brain was normalized to Talairach coordinates, and the individual maps were compared on a pixel by pixel basis. Significantly activated pixels common to at least four out of six subjects were retained to construct the final functional image. The pattern of activation during visually guided movements was consistent with the flow of information from striate and extrastriate visual areas, to the posterior parietal complex, and then to frontal motor areas. The extensive activation of this network and the reproducibility among subjects is consistent with a role for the dorsal stream in transforming visual information into motor behavior. Also extensively activated were the medial and lateral cerebellar structures, implicating the cortico–ponto–cerebellar pathway in visually guided movements. Thalamic activation, particularly of the pulvinar, suggests that this nucleus is an important subcortical target of the dorsal stream. 相似文献
Residual effects of an initial bolus of gadolinium contrast agent have been previously demonstrated in sequential dynamic susceptibility contrast MR experiments. While these residual effects quickly reach a saturation steady state, their etiology is uncertain, and they can lead to spurious estimates of hemodynamic parameters in activation experiments. The possible influence ofT1effects is now investigated with experiments in whichT1weighting is varied as well as with serial regionalT1measurements. Little evidence for significant residualT1effects is found, suggesting instead that susceptibility effects underlie these observations. An initial saturation dose of contrast agent minimizes this effect. 相似文献
Noninvasive cognitive neuroimaging studies based on functional magnetic resonance imaging (fMRI) are of ever-increasing importance for basic and clinical neurosciences. The explanatory power of fMRI could be greatly expanded, however, if the pattern of the neuronal circuitry underlying functional activation could be made visible in an equally noninvasive manner. In this study, blood oxygenation level-dependent (BOLD)-based fMRI and diffusion tensor imaging (DTI) were performed in the same cat visual cortex, and the foci of fMRI activation utilized as seeding points for 3D DTI fiber reconstruction algorithms, thus providing the map of the axonal circuitry underlying visual information processing. The methods developed in this study will lay the foundation for in vivo neuroanatomy and the ability for noninvasive longitudinal studies of brain development. 相似文献
The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI echo-planar imaging (EPI) data is severely degraded in the presence of head motion. In addition, EPI is sensitive to susceptibility-induced geometric distortions. Head motion causes image shifts and associated field map changes that induce different geometric distortion at different time points. Conventionally, geometric distortion is "corrected" with a static field map independently of image registration. That approach ignores all field map changes induced by head motion. This work evaluates the improved motion correction capability of mapping slice to volume with concurrent iterative field corrected reconstruction using updated field maps derived from an initial static field map that has been spatially transformed and resampled. It accounts for motion-induced field map changes for translational and in-plane rotation motion. The results from simulated EPI time series data, in which motion, image intensity and activation ground truths are available, show improved accuracy in image registration, field corrected image reconstruction and activation detection. 相似文献