首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   1篇
  国内免费   15篇
数学   1篇
物理学   179篇
综合类   51篇
  2024年   1篇
  2022年   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   14篇
  2013年   20篇
  2012年   9篇
  2011年   23篇
  2010年   29篇
  2009年   22篇
  2008年   26篇
  2007年   32篇
  2006年   4篇
  2005年   6篇
  2004年   9篇
  2003年   12篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   3篇
  1996年   1篇
排序方式: 共有231条查询结果,搜索用时 15 毫秒
161.
Independent component analysis (ICA) is a widely accepted method to extract brain networks underlying cognitive processes from functional magnetic resonance imaging (fMRI) data. However, the application of ICA to multi-task fMRI data is limited due to the potential non-independency between task-related components. The ICA with projection (ICAp) method proposed by our group (Hum Brain Mapp 2009;30:417–31) is demonstrated to be able to solve the interactions among task-related components for single subject fMRI data. However, it still must be determined if ICAp is capable of processing multi-task fMRI data over a group of subjects. Moreover, it is unclear whether ICAp can be reliably applied to event-related (ER) fMRI data. In this study, we combined the projection method with the temporal concatenation method reported by Calhoun (Hum Brain Mapp 2008;29:828–38), referred to as group ICAp, to perform the group analysis of multi-task fMRI data. Both a human fMRI rest data-based simulation and real fMRI experiments, of block design and ER design, verified the feasibility and reliability of group ICAp, as well as demonstrated that ICAp had the strength to separate 4D multi-task fMRI data into multiple brain networks engaged in each cognitive task and to adequately find the commonalities and differences among multiple tasks.  相似文献   
162.
In previous works, boosting aggregation of classifier outputs from discrete brain areas has been demonstrated to reduce dimensionality and improve the robustness and accuracy of functional magnetic resonance imaging (fMRI) classification. However, dimensionality reduction and classification of mixed activation patterns of multiple classes remain challenging. In the present study, the goals were (a) to reduce dimensionality by combining feature reduction at the voxel level and backward elimination of optimally aggregated classifiers at the region level, (b) to compare region selection for spatially aggregated classification using boosting and partial least squares regression methods and (c) to resolve mixed activation patterns using probabilistic prediction of individual tasks. Brain activation maps from interleaved visual, motor, auditory and cognitive tasks were segmented into 144 functional regions. Feature selection reduced the number of feature voxels by more than 50%, leaving 95 regions. The two aggregation approaches further reduced the number of regions to 30, resulting in more than 75% reduction of classification time and misclassification rates of less than 3%. Boosting and partial least squares (PLS) were compared to select the most discriminative and the most task correlated regions, respectively. Successful task prediction in mixed activation patterns was feasible within the first block of task activation in real-time fMRI experiments. This methodology is suitable for sparsifying activation patterns in real-time fMRI and for neurofeedback from distributed networks of brain activation.  相似文献   
163.
Nonnegative matrix factorization (NMF) is a blind source separation (BSS) algorithm which is based on the distinct constraint of nonnegativity of the estimated parameters as well as on the measured data. In this study, according to the potential feasibility of NMF for fMRI data, the four most popular NMF algorithms, corresponding to the following two types of (1) least-squares based update [i.e., alternating least-squares NMF (ALSNMF) and projected gradient descent NMF] and (2) multiplicative update (i.e., NMF based on Euclidean distance and NMF based on divergence cost function), were investigated by using them to estimate task-related neuronal activities. These algorithms were applied firstly to individual data from a single subject and, subsequently, to group data sets from multiple subjects. On the single-subject level, although all four algorithms detected task-related activation from simulated data, the performance of multiplicative update NMFs was significantly deteriorated when evaluated using visuomotor task fMRI data, for which they failed in estimating any task-related neuronal activities. In group-level analysis on both simulated data and real fMRI data, ALSNMF outperformed the other three algorithms. The presented findings may suggest that ALSNMF appears to be the most promising option among the tested NMF algorithms to extract task-related neuronal activities from fMRI data.  相似文献   
164.
Independent component analysis (ICA) has been proven to be effective for functional magnetic resonance imaging (fMRI) data analysis. However, ICA decomposition requires to optimize the unmixing matrix iteratively whose initial values are generated randomly. Thus the randomness of the initialization leads to different ICA decomposition results. Therefore, just one-time decomposition for fMRI data analysis is not usually reliable. Under this circumstance, several methods about repeated decompositions with ICA (RDICA) were proposed to reveal the stability of ICA decomposition. Although utilizing RDICA has achieved satisfying results in validating the performance of ICA decomposition, RDICA cost much computing time. To mitigate the problem, in this paper, we propose a method, named ATGP-ICA, to do the fMRI data analysis. This method generates fixed initial values with automatic target generation process (ATGP) instead of being produced randomly. We performed experimental tests on both hybrid data and fMRI data to indicate the effectiveness of the new method and made a performance comparison of the traditional one-time decomposition with ICA (ODICA), RDICA and ATGP-ICA. The proposed method demonstrated that it not only could eliminate the randomness of ICA decomposition, but also could save much computing time compared to RDICA. Furthermore, the ROC (Receiver Operating Characteristic) power analysis also denoted the better signal reconstruction performance of ATGP-ICA than that of RDICA.  相似文献   
165.
We implemented pseudo-continuous ASL (pCASL) with 2D and 3D balanced steady state free precession (bSSFP) readout for mapping blood flow in the human brain, retina, and kidney, free of distortion and signal dropout, which are typically observed in the most commonly used echo-planar imaging acquisition. High resolution functional brain imaging in the human visual cortex was feasible with 3D bSSFP pCASL. Blood flow of the human retina could be imaged with pCASL and bSSFP in conjunction with a phase cycling approach to suppress the banding artifacts associated with bSSFP. Furthermore, bSSFP based pCASL enabled us to map renal blood flow within a single breath hold. Control and test–retest experiments suggested that the measured blood flow values in retina and kidney were reliable. Because there is no specific imaging tool for mapping human retina blood flow and the standard contrast agent technique for mapping renal blood flow can cause problems for patients with kidney dysfunction, bSSFP based pCASL may provide a useful tool for the diagnosis of retinal and renal diseases and can complement existing imaging techniques.  相似文献   
166.
The task induced blood oxygenation level dependent signal changes observed using functional magnetic resonance imaging (fMRI) are critically dependent on the relationship between neuronal activity and hemodynamic response. Therefore, understanding the nature of neurovascular coupling is important when interpreting fMRI signal changes evoked via task. In this study, we used regional homogeneity (ReHo), a measure of local synchronization of the BOLD time series, to investigate whether the similarities of one voxel with the surrounding voxels are a property of neurovascular coupling. FMRI scans were obtained from fourteen subjects during bilateral finger tapping (FTAP), digit–symbol substitution (DSST) and periodic breath holding (BH) paradigm. A resting-state scan was also obtained for each of the subjects for 4 min using identical imaging parameters. Inter-voxel correlation analyses were conducted between the resting-state ReHo, resting-state amplitude of low frequency fluctuations (ALFF), BH responses and task activations within the masks related to task activations. There was a reliable mean voxel-wise spatial correlation between ReHo and other neurovascular variables (BH responses and ALFF). We observed a moderate correlation between ReHo and task activations (FTAP: r = 0.32; DSST: r = 0.22) within the task positive network and a small yet reliable correlation within the default mode network (DSST: r = − 0.08). Subsequently, a linear regression was used to estimate the contribution of ReHo, ALFF and BH responses to the task activated voxels. The unique contribution of ReHo was minimal. The results suggest that regional synchrony of the BOLD activity is a property that can explain the variance of neurovascular coupling and task activations; but its contribution to task activations can be accounted for by other neurovascular factors such as the ALFF.  相似文献   
167.
 面孔识别是人类社会生活的重要功能,也是一个复杂的信息处理过程;它既是人工智能、机器视觉、模式识别、测谎领域的重要研究内容,也是认知心理学、认知神经科学、社会心理学等领域的重要研究方向.通过数字图像或者视频来完成自动面孔识别和辨认,是计算机科学领域的一个新的研究方向;而如何理解和解释大脑是如何处理面孔(特别是人类面孔)的研究,也是认知神经科学一个非常重要的领域.该文主要介绍了面孔认知的基本概念、研究的主要问题及相关领域的研究进展;具体从面孔认知模型、面孔特异性研究、面孔倒置效应和熟悉度效应几个方面,回顾了该领域内的一些重要研究成果,并对面孔认知研究的新方向,意识下面孔认知研究和面孔微表情认知研究提出了展望.  相似文献   
168.
Quantitative mapping of the effective transverse relaxation time, T2* and proton density was performed in a motor activation functional MRI (fMRI) study using multi-echo, echo planar imaging (EPI) and NumART2* (Numerical Algorithm for Real time T2*). Comparisons between NumART2* and conventional single echo EPI with an echo time of 64 ms were performed for five healthy participants examined twice. Simulations were also performed to address specific issues associated with the two techniques, such as echo time-dependent signal variation. While the single echo contrast varied with the baseline T2* value, relative changes in T2* remained unaffected. Statistical analysis of the T2* maps yielded fMRI activation patterns with an improved statistical detection relative to conventional EPI but with less activated voxels, suggesting that NumART2* has superior spatial specificity. Two effects, inflow and dephasing, that may explain this finding were investigated. Particularly, a statistically significant increase in proton density was found in a brain area that was detected as activated by conventional EPI but not by NumART2* while no such changes were observed in brain areas that showed stimulus correlated signal changes on T2* maps.  相似文献   
169.
Functional magnetic resonance imaging (fMRI) has opened a new area to explore the human brain. The fMRI can reveal the deep insights of spatial and temporal changes underlying a broad range of brain function, such as motor, vision, memory and emotion, all of which are helpful in the clinical investigation. In this paper, we introduce some recent-developed algorithms for fMRI signal detection such as model-driven method (general linear model, deconvolution model, non-linear model, etc.) and data-driven method (principle component analysis, independent component analysis, self-organization mapping, clustered constrained non-negative matrix factorization, etc.). We also propose several important applications of neuroimaging and point out their shortcomings and future perspectives.  相似文献   
170.
THE GLOBAL PERCEPTION OF HIERARCHICALLY ORGANIZED STIMULI CAN BE DIFFERENT FROM THE LOCAL PERCEPTION IN THAT GLOBAL RESPONSES ARE FASTER THAN LOCAL RESPONSES AND THE GLOBAL-TO-LOCAL INTERFERENCE IS STRONGER THAN THE RE-VERSE[1]. THIS GLOBAL PRECEDENCE EFF…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号