首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   1篇
  国内免费   15篇
数学   1篇
物理学   179篇
综合类   51篇
  2024年   1篇
  2022年   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   14篇
  2013年   20篇
  2012年   9篇
  2011年   23篇
  2010年   29篇
  2009年   22篇
  2008年   26篇
  2007年   32篇
  2006年   4篇
  2005年   6篇
  2004年   9篇
  2003年   12篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   3篇
  1996年   1篇
排序方式: 共有231条查询结果,搜索用时 9 毫秒
111.
Research on the functions of the human brain requires that functional magnetic resonance imaging (MRI) moves towards producing images with less distortion and higher temporal and spatial resolution. This study compares passband balanced steady-state free precession (bSSFP) acquisitions with and without parallel imaging (PI) to investigate whether combining PI with this pulse sequence is a viable option for functional MRI. Such a novel combination has the potential to offer the distortion-free advantages of bSSFP with the reduced acquisition time of PI. Scans were done on a Philips 3T Intera, using the installed bSSFP pulse sequence, both with and without the sensitivity encoding (SENSE) PI option. The task was a visual flashing checkerboard, and the viewing window covered the visual cortex. Sensitivity comparisons with and without PI were done using the same manually drawn region of interest for each time course of the subject, and comparing the z-score summary statistics: number of voxels with z>2.3, the mean of those voxels, their 90th percentile and their maximum value. We show that PI greatly improves the temporal resolution in bSSFP, reducing the volume acquisition time by more than half in this study to 0.67 s with 3-mm isotropic voxels. At the same time, a statistically significant increase was found for the maximum z-score using bSSFP with PI as compared to without it (P=.02). This improvement can be understood in terms of physiological noise, as demonstrated by noise measurements. This produces observed increases in the overall temporal signal to noise of the functional time series, giving greater sensitivity to functional activations with PI. This study demonstrates for the first time the possibility of combining PI with bSSFP to achieve distortion-free functional images without loss of sensitivity and with high temporal resolution.  相似文献   
112.
We have recently used combined electrostimulation, neurophysiology, microinjection and functional magnetic resonance imaging (fMRI) to study the cortical activity patterns elicited during stimulation of cortical afferents in monkeys. We found that stimulation of a site in lateral geniculate nucleus (LGN) increases the fMRI signal in the regions of primary visual cortex receiving input from that site, but suppresses it in the retinotopically matched regions of extrastriate cortex. Intracortical injection experiments showed that such suppression is due to synaptic inhibition. During these experiments, we have consistently observed activation of superior colliculus (SC) following LGN stimulation. Since LGN does not directly project to SC, the current study investigated the origin of SC activation. By examining experimental manipulations inactivating the primary visual cortex, we present here evidence that the robust SC activation, which follows the stimulation of LGN, is due to the activation of corticocollicular pathway.  相似文献   
113.
Functional magnetic resonance imaging (fMRI) exploits the blood oxygenation level dependent (BOLD) effect to detect neuronal activation related to various experimental paradigms. Some of these, such as reversal learning, involve the orbitofrontal cortex and its interaction with other brain regions like the amygdala, striatum or dorsolateral prefrontal cortex. These paradigms are commonly investigated with event-related methods and gradient echo-planar imaging (EPI) with short echo time of 27 ms. However, susceptibility-induced signal losses and image distortions in the orbitofrontal cortex are still a problem for this optimized sequence as this brain region consists of several slices with different optimal echo times. An EPI sequence with slice-dependent echo times is suitable to maximize BOLD sensitivity in all slices and might thus improve signal detection in the orbitofrontal cortex. To test this hypothesis, we first optimized echo times via BOLD sensitivity simulation. Second, we measured 12 healthy volunteers using a standard EPI sequence with an echo time of 27 ms and a modified EPI sequence with echo times ranging from 22 ms to 47 ms. In the orbitofrontal cortex, the number of activated voxels increased from 87±44 to 549±83 and the maximal t-value increased from 4.4±0.3 to 5.4±0.3 when the modified EPI was used. We conclude that an EPI with slice-dependent echo times may be a valuable tool to mitigate susceptibility artifacts in event-related whole-brain fMRI studies with a focus on the orbitofrontal cortex.  相似文献   
114.
Segmented three-dimensional echo planar imaging (3D-EPI) provides higher image signal-to-noise ratio (SNR) than standard single-shot two-dimensional echo planar imaging (2D-EPI), but is more sensitive to physiological noise. The aim of this study was to compare physiological noise removal efficiency in single-shot 2D-EPI and segmented 3D-EPI acquired at 7 Tesla. Two approaches were investigated based either on physiological regressors (PR) derived from cardiac and respiratory phases, or on principal component analysis (PCA) using additional resting-state data. Results show that, prior to physiological noise removal, 2D-EPI data had higher temporal SNR (tSNR), while spatial SNR was higher in 3D-EPI. Blood oxygen level dependent (BOLD) sensitivity was similar for both methods. The PR-based approach allowed characterization of relative contributions from different noise sources, confirming significant increases in physiological noise from 2D to 3D prior to correction. Both physiological noise removal approaches produced significant increases in tSNR and BOLD sensitivity, and these increases were larger for 3D-EPI, resulting in higher BOLD sensitivity in the 3D-EPI than in the 2D-EPI data. The PCA-based approach was the most effective correction method, yielding higher tSNR values for 3D-EPI than for 2D-EPI postcorrection.  相似文献   
115.
Among the multiple sequences available for functional magnetic resonance imaging (fMRI), the Steady State Free Precession (SSFP) sequence offers the highest signal-to-noise ratio (SNR) per unit time as well as distortion free images not feasible with the more commonly employed single-shot echo planar imaging (EPI) approaches. Signal changes occurring with activation in SSFP sequences reflect underlying changes in both irreversible and reversible transverse relaxation processes. The latter are characterized by changes in the central frequencies and widths of the inherent frequency distribution present within a voxel. In this work, the well-known frequency response of the SSFP signal intensity is generalized to include the widths and central frequencies of some common frequency distributions on SSFP signal intensities. The approach, using a previously unnoted series expansion, allows for a separation of reversible from irreversible transverse relaxation effects on SSFP signal intensity changes. The formalism described here should prove useful for identifying and modeling mechanisms associated with SSFP signal changes accompanying neural activation.  相似文献   
116.
117.
Fast spectroscopic imaging strategies for potential applications in fMRI   总被引:1,自引:0,他引:1  
Technical aspects of two general fast spectroscopic imaging (SI) strategies, one based on gradient echo trains and the other on spin echo trains, are reviewed within the context of potential applications in the field of functional magnetic resonance imaging (fMRI). Fast spectroscopic imaging of water may prove useful for identifying mechanisms underlying the blood oxygenation level dependence (BOLD) of the water signal during brain activation studies. Reasonably rapid mapping of changes in proton signals from brain metabolites, like lactate, creatine or even neurotransmitter associated metabolites like GABA, is substantially more challenging but technically feasible particularly as higher field strengths become available. Fast spectroscopic methods directed towards the 31P signals from phosphocreatine (PCr) and adenosine tri-phosphates (ATP) are also technically feasible and may prove useful for studying cerebral energetics within fMRI contexts.  相似文献   
118.
In this overview we examine the basic principles of properties of electroencephalogram and magnetoencephalogram and the corresponding models of sources and of the volume conductor. In particular we show how the dipolar model is anchored in neurophysiological findings and how the different conductivities of the brain and the tissue surrounding it can be estimated. Using these basic models as tools we show how the functional localization of the neural sources of rhythmic activities (alpha and mu rhythms and sleep spindles) and of epileptiform activities can be estimated and integrated with structural data of the brain obtained with MRI.  相似文献   
119.
The periaqueductal gray (PAG), a brain area belonging to the descending pain modulatory system, plays a crucial role in pain perception. Little information is available on the relationship between PAG activation and perceived pain intensity. In this study, we acquired functional magnetic resonance imaging (fMRI) scans from the PAG during the cold pressor test, a model for tonic pain, in 12 healthy volunteers. fMRI data were acquired with a 12-channel head-coil and a 3-Tesla scanner and analyzed with Statistical Parametric Mapping (SPM8) software.  相似文献   
120.
为了实现任务态f MRI的嗅觉刺激装置的设计和功能验证.满足嗅觉f MRI实验的自动化刺激要求.首先,针对嗅觉刺激和人体嗅觉感受的特点,结合使用环境的要求,总结嗅觉f MRI的实验设计方法,归纳出用于f MRI的嗅觉刺激装置的具体需求.将刺激装置分为气路系统和控制系统、气路系统采用洁净空气通过气味溶液产生相应的气味气体,通过多支路切换达到输出不同气味的目的;控制系统采用虚拟仪器方案,其软件基于Lab VIEW平台编程,提供可输入刺激序列的人机界面,并根据要求控制电磁阀切换不同气路.然后,使用该刺激装置对单个被试进行嗅觉刺激并成像,刺激气体采用乙酸异戊酯和吡啶,实验为组块设计,使用Siemens 3.0 T MRI仪器EPI序列进行扫描,数据处理采用基于Matlab软件的SPM8和Mars Ba R工具包.选取眶额叶和岛叶中的脑激活团簇作为感兴趣区域(ROI)进行分析,激活信号在时间上的强度变化与刺激序列变化基本一致,吡啶组块的激活信号强度大于乙酸异戊酯组块激活强度,且其强度变化比乙酸异戊酯组块更符合刺激序列.ROI分析证明刺激装置基本满足嗅觉f MRI实验需要,具有较强的可用性.此外,在相同的刺激时间和间隔时间下,人脑同一区域对不同刺激气味的激活反应可能不同.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号