首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   1篇
  国内免费   15篇
数学   1篇
物理学   179篇
综合类   51篇
  2024年   1篇
  2022年   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   14篇
  2013年   20篇
  2012年   9篇
  2011年   23篇
  2010年   29篇
  2009年   22篇
  2008年   26篇
  2007年   32篇
  2006年   4篇
  2005年   6篇
  2004年   9篇
  2003年   12篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   3篇
  1996年   1篇
排序方式: 共有231条查询结果,搜索用时 15 毫秒
11.
fMRI time series analysis based on stationary wavelet and spectrum analysis   总被引:3,自引:0,他引:3  
The low signal to noise ratio (SNR) of functional MRI (fMRI) prefers more sensitive data analysis methods. Based on stationary wavelet transform and spectrum analysis, a new method with high detective sensitivity was developed for analyzing fMRI time series, which does not require any prior assumption of the characteristics of noises. In the proposed method, every component of fMRI time series in the different time-frequency scales of stationary wavelet transform was discerned by the spectrum analysis, then the components from noises were removed using the stationary wavelet transform, finally the components of real brain activation were detected by cross-correlation analysis. The results obtained from both simulated and in vivo visual experiments illustrated that the proposed method has much higher sensitivity than the traditional cross-correlation method.  相似文献   
12.
The “direct detection” of neuronal activity by MRI could offer improved spatial and temporal resolution compared to the blood oxygenation level-dependent (BOLD) effect. Here we describe initial attempts to use MRI to detect directly the neuronal currents resulting from spontaneous alpha wave activity, which have previously been shown to generate the largest extracranial magnetic fields. Experiments were successfully carried out on four subjects at 3 T. A single slice was imaged at a rate of 25 images per second under two conditions. The first (in darkness with eyes-closed) was chosen to promote alpha wave activity, while the second (eyes-open viewing a visual stimulus) was chosen to suppress it. The fluctuations of the phase and magnitude of the resulting MR image data were frequency analysed, and tested for the signature of both alpha wave activity and neuronal activity evoked by the visual stimulus.

Regions were found that consistently showed elevated power in fluctuations of the phase of the MR signal, in the frequency range of alpha waves, during the eyes-closed condition. It was conservatively assumed that if oscillations occurred at the same frequency in the magnitude signal from the same region or at the same frequency in the phase or magnitude signal from other regions overlying large vessels or cerebrospinal fluid (CSF), then the phase changes were not due to neuronal activity related to alpha waves. Using these criteria the data obtained were consistent with direct detection of alpha wave activity in three of the four volunteers. No significant MR signal fluctuations due to evoked activity were identified.  相似文献   

13.
We present a framework aimed to reveal directed interactions of activated brain areas using time-resolved fMRI and vector autoregressive (VAR) modeling in the context of Granger causality. After describing the underlying mathematical concepts, we present simulations helping to characterize the conditions under which VAR modeling and Granger causality can reveal directed interactions from fluctuations in BOLD-like signal time courses. We apply the proposed approach to a dynamic sensorimotor mapping paradigm. In an event-related fMRI experiment, subjects performed a visuomotor mapping task for which the mapping of two stimuli (“faces” vs “houses”) to two responses (“left” or “right”) alternated periodically between the two possible mappings. Besides expected activity in sensory and motor areas, a fronto-parietal network was found to be active during presentation of a cue indicating a change in the stimulus-response (S-R) mapping. The observed network includes the superior parietal lobule and premotor areas. These areas might be involved in setting up and maintaining stimulus-response associations. The Granger causality analysis revealed a directed influence exerted by the left lateral prefrontal cortex and premotor areas on the left posterior parietal cortex.  相似文献   
14.
Noninvasive cognitive neuroimaging studies based on functional magnetic resonance imaging (fMRI) are of ever-increasing importance for basic and clinical neurosciences. The explanatory power of fMRI could be greatly expanded, however, if the pattern of the neuronal circuitry underlying functional activation could be made visible in an equally noninvasive manner. In this study, blood oxygenation level-dependent (BOLD)-based fMRI and diffusion tensor imaging (DTI) were performed in the same cat visual cortex, and the foci of fMRI activation utilized as seeding points for 3D DTI fiber reconstruction algorithms, thus providing the map of the axonal circuitry underlying visual information processing. The methods developed in this study will lay the foundation for in vivo neuroanatomy and the ability for noninvasive longitudinal studies of brain development.  相似文献   
15.
In pharmacological fMRI experiments in animal models, blood pool contrast agents may be used to map cerebral blood volume change as a surrogate for neural activation. When the background signal drift due to contrast agent washout is non-negligible over the duration of the signal changes of interest, time-course detrending is essential for accurate interpretation of the experiment. Detrending approaches based on estimation of the background signal from a baseline period of the time course prior to pharmacological (or functional) challenge were evaluated with the aim of identifying a robust method of estimating the contrast agent washout contribution to the background signal drift. For fMRI studies in the rat, it was found that a constrained fit of a mono-exponential washout model was more accurate than a constant background approximation and unconstrained fits for experiments investigating the functional response to rapid pharmacological challenges such as cocaine and amphetamine. Moreover, the constrained fitting approach allows shorter baseline periods than unconstrained extrapolation, reducing the required duration of the experiment.  相似文献   
16.
A detailed theoretical analysis of the free induction decay (FID) and spin echo (SE) MR signal formation in the presence of mesoscopic structure-specific magnetic field inhomogeneities is developed in the framework of the Gaussian phase distribution approximation. The theory takes into account diffusion of nuclear spins in inhomogeneous magnetic fields created by arbitrarily shaped magnetized objects with permeable boundaries. In the short-time limit the FID signal decays quadratically with time and depends on the objects' geometry only through the volume fraction, whereas the SE signal decays as 5/2 power of time with the coefficient depending on both the volume fraction of the magnetized objects and their surface-to-volume ratio. In the motional narrowing regime, the FID and SE signals for objects of finite size decay mono-exponentially; a simple general expression is obtained for the relaxation rate constant deltaR2. In the case of infinitely long cylinders in the motional narrowing regime the theory predicts non-exponential signal decay lnS approximately -tlnt in accordance with previous results. For specific geometries of the objects (spheres and infinitely long cylinders) exact analytical expressions for the FID and SE signals are given. The theory can be applied, for instance, to biological systems where mesoscopic magnetic field inhomogeneities are induced by deoxygenated red blood cells, capillary network, contrast agents, etc.  相似文献   
17.
18.
The medial prefrontal cortex (MPFC) of human adults is involved in attributing mental states to real human agents but not to virtual artificial characters. This study examined whether such differential MPFC activity can be observed in children who are more fascinated by cartoons than adults. We measured brain activity using functional magnetic resonance imaging (fMRI) while 10-year-old children watched movie and cartoon clips, simulating real and virtual visual worlds, respectively. We showed neuroimaging evidence that, in contrast to adults, the MPFC of children was activated when perceiving both human agents and artificial characters in coherent visual events. Our findings suggest that, around the age of 10 years, the MPFC activity in children is different from that in adults in that it can be spontaneously activated by non-human agents in a virtual visual world.  相似文献   
19.
20.
Block and event-related stimulus designs are typically used in fMRI studies depending on the importance of detection power or estimation efficiency. The extent of vascular contribution to variability in block and event-related fMRI-BOLD response is not known. With scaling, the extent of vascular variability in the fMRI-BOLD response during block and event-related design tasks was investigated. Blood oxygen level-dependent (BOLD) contrast data from healthy volunteers performing a block design motor task and an event-related memory task requiring performance of a motor response were analyzed from the regions of interest (ROIs) surrounding the primary and supplementary motor cortices. Average BOLD signal change was significantly larger during the block design compared to the event-related design. In each subject, BOLD signal change across voxels in the ROIs had higher variation during the block design task compared to the event-related design task. Scaling using the resting state fluctuation of amplitude (RSFA) and breath-hold (BH), which minimizes BOLD variation due to vascular origins, reduced the within-subject BOLD variability in every subject during both tasks but significantly reduced BOLD variability across subjects only during the block design task. The strong non-neural source of intra- and intersubject variability of BOLD response during the block design compared to event-related task indicates that study designs optimizing for statistical power through enhancement of the BOLD contrast (for, e.g., block design) can be affected by enhancement of non-neural sources of BOLD variability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号