首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   617篇
  免费   85篇
  国内免费   42篇
化学   540篇
晶体学   3篇
力学   7篇
综合类   1篇
物理学   70篇
综合类   123篇
  2023年   9篇
  2022年   31篇
  2021年   41篇
  2020年   39篇
  2019年   23篇
  2018年   26篇
  2017年   20篇
  2016年   42篇
  2015年   31篇
  2014年   35篇
  2013年   60篇
  2012年   43篇
  2011年   34篇
  2010年   27篇
  2009年   27篇
  2008年   28篇
  2007年   31篇
  2006年   39篇
  2005年   28篇
  2004年   24篇
  2003年   27篇
  2002年   7篇
  2001年   9篇
  2000年   18篇
  1999年   5篇
  1998年   5篇
  1997年   11篇
  1996年   6篇
  1995年   6篇
  1994年   3篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1984年   2篇
  1981年   1篇
排序方式: 共有744条查询结果,搜索用时 15 毫秒
131.
Fish oil is the primary source of long-chain omega-3 fatty acids, which are important nutrients that assist in the prevention and treatment of heart disease and have many health benefits. It also contains vitamins that are lipid-soluble, such as vitamins A and D. This work aimed to determine how the wall material composition influenced the encapsulation efficiency and oxidative stability of omega fish oils in spray-dried microcapsules. In this study, mackerel, sardine waste oil, and sand smelt fish oil were encapsulated in three different wall materials (whey protein, gum Arabic (AG), and maltodextrin) by conventional spray-drying. The effect of the different wall materials on the encapsulation efficiency (EE), flowability, and oxidative stability of encapsulated oils during storage at 4 °C was investigated. All three encapsulating agents provided a highly protective effect against the oxidative deterioration of the encapsulated oils. Whey protein was found to be the most effective encapsulated agent comparing to gum Arabic and maltodextrin. The results indicated that whey protein recorded the highest encapsulation efficiency compared to the gum Arabic and maltodextrin in all encapsulated samples with EE of 71.71%, 68.61%, and 64.71% for sand smelt, mackerel, and sardine oil, respectively. Unencapsulated fish oil samples (control) recorded peroxide values (PV) of 33.19, 40.64, and 47.76 meq/kg oil for sand smelt, mackerel, and sardine oils after 35 days of storage, while all the encapsulated samples showed PV less than 10 in the same storage period. It could be concluded that all the encapsulating agents provided a protective effect to the encapsulated fish oil and elongated the shelf life of it comparing to the untreated oil sample (control). The results suggest that encapsulation of fish oil is beneficial for its oxidative stability and its uses in the production of functional foods.  相似文献   
132.
Unimolecular micelles were successfully synthesized from mucic acid, fatty acids, and poly(ethylene glycols) to create biocompatible polymers. These polymers consist of a core‐shell structure that resembles conventional micellar structures but with significant thermodynamic stability in aqueous media. The core of the polymers provide a hydrophobic environment for drug encapsulation via hydrophobic interactions, whereas the shell provides excellent water solubility. The polymers were characterized by nuclear magnetic resonance, infrared and mass spectroscopies, as well as gel permeation chromatography, differential scanning calorimetry, and thermogravimetric and elemental analyses. Encapsulation ability was measured using high‐pressure liquid chromatography to monitor lidocaine, a hydrophobic molecule. Encapsulation capabilities increased as lipophilicity of the core increased. To verify that encapsulation was caused by individual unimolecular micelles, surface tension and dynamic light scattering measurements were performed. The results indicated that these unimolecular micelles have great potential as drug carriers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 703–711, 1999  相似文献   
133.
Cyclodextrin inclusion complexes have been successfully used to encapsulate essential oils, improving their physicochemical properties and pharmacological effects. Besides being well-known for its effects on cats and other felines, catnip (Nepeta cataria) essential oil demonstrates repellency against blood-feeding pests such as mosquitoes. This study evaluates the tick repellency of catnip oil alone and encapsulated in β-cyclodextrin, prepared using the co-precipitation method at a 1:1 molar ratio. The physicochemical properties of this inclusion complex were characterized using GC-FID for encapsulation efficiency and yield and SPME/GC-MS for volatile emission. Qualitative assessment of complex formation was done by UV-Vis, FT-IR, 1H NMR, and SEM analyses. Catnip oil at 5% (v/v) demonstrated significant tick repellency over time, being comparable to DEET as used in commercial products. The prepared [catnip: β-CD] inclusion complex exerted significant tick repellency at lower concentration of the essential oil (equivalent of 1% v/v). The inclusion complex showed that the release of the active ingredient was consistent after 6 h, which could improve the effective repellent duration. These results demonstrated the effective tick repellent activity of catnip essential oil and the successful synthesis of the inclusion complex, suggesting that β-CDs are promising carriers to improve catnip oil properties and to expand its use in repellent formulations for tick management.  相似文献   
134.
CgL1 laccase from Corynebacterium glutamicum was encapsulated into the metal-organic framework (MOF) ZIF-8 which was synthesized in a rapid enzyme friendly aqueous synthesis, the fastest in situ encapsulation of laccases reported to date. The obtained enzyme/MOF, i. e. laccase@ZIF-8 composite showed enhanced thermal (up to 70 °C) and chemical (N,N-dimethylformamide) stability, resulting in a stable heterogenous catalyst, suitable for high temperature reactions in organic solvents. Furthermore, the defined structure of ZIF-8 produced a size selective substrate specificity, so that substrates larger than the pore size were not accepted. Thereby, 2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) was used to verify that the enzyme is immobilized inside the MOF versus the outside surface. The enzyme@MOF composite was analyzed by atomic absorption spectroscopy (ASS) to precisely determine the enzyme loading to 2.1 wt%.  相似文献   
135.
底部充填是一种用来提高电子产品在恶劣环境下工作的稳定性及可靠性的技术,是电子制造产业的常用方法.本文基于细观力学方法建立了计算底部充填封装芯片热应力的方法.针对底部充填封装芯片焊锡-充填物接合层的结构特点,我们建立了接合层的均一化模型,并从理论上推导了接合层的等效弹性常数、热膨胀系数和导热系数.运用该均一化模型,我们对封装芯片工作产热导致的热传导和热应力问题进行了有限元数值模拟,计算的结果与接合层未均一化的模型具有较好的一致性,而计算效率极大提高,显示了该方法在计算底部充填封装芯片热应力方面的可行性.  相似文献   
136.
An organic silane acrylate resin (PMBK) was synthesized by free-radical solution polymerization using methyl methacrylate, butyl acrylate and (3-methacryloxypropyl)trimethoxysilane as monomers. Aluminum (Al) particles were then encapsulated in inorganic–organic hybrid films that were prepared by hydrolysis and condensation of PMBK and tetraethyl orthosilicate (TEOS) on the surface of Al pigments. Characterization results showed that PMBK and TEOS could simultaneously hydrolyze and condense with hydroxyl groups on the surface of the Al particles to form composite Al particles coated with inorganic–organic hybrid films. Compared with raw Al particles, the corrosion resistance and adhesive properties of paint films containing the composite Al particles were improved greatly, while the glossiness of the paint films decreased slightly, from 48.6° to 47.0°. In alkaline media (pH 11), the volume of evolved H2 of composite Al particles was only 3.5 mL, whereas that of raw Al was 83.5 mL. The glossiness of paint films containing composite Al particles decreased by 1.66% after immersion in alkaline media for 24 h, whereas that of raw Al decreased by 14.82%. Peel-off tests of the paint films showed that the composite particles moved slightly away from the paint films. In contrast, the raw Al particles were seriously desquamated, suggesting encapsulation of hybrid films can greatly improve the adhesive properties of Al particles in paint films.  相似文献   
137.
138.
Supramolecular encapsulation of small guest molecules inside well-defined cavities of molecular capsules has witnessed broad attention because of the unusual behaviour of these systems. The molecular capsules generally consist of rigid complementary building blocks that are held together by multiple, complementary non-covalent interactions. Interestingly, it has been shown that chemical transformations can take place inside these capsules and in some examples the reaction is accelerated, while in other cases otherwise instable intermediates could be isolated in the capsulated form. Many reactions of interest require a transition-metal (TM) catalyst, and the creation of new capsules in which such catalysts are implemented within the structure is thus required for the development of resourceful type of catalyst systems for these processes. In this concept article we will discuss new strategies to arrive at such systems, with a focus on a ligand-templated approach. In this approach, multifunctional ligands are used as templates for the encapsulation process by supramolecular building blocks and concomitantly for the formation of TM complexes that are active in catalytic processes. The obtained encapsulated transition-metal catalysts show unusual reactivity and selectivity behaviour that will be discussed in detail.  相似文献   
139.
Alkyl chains can adopt seemingly unusual conformations, such as helices, when bound to natural and synthetic hydrophobic receptors. This plasticity allows the alkanes to assume shapes that are congruent to the receptor's space and fill that space properly. We describe here the use of cavitands and capsules as tools that expose the forces involved in the molecular recognition of hydrocarbons. Studies using NMR spectroscopy reveal how attractive interactions and solvophobic forces are maximized in solution through unprecedented contortions of alkanes and hint at a new generation of nanoscale mechanical devices.  相似文献   
140.
In this study, we investigated the effect of the microenvironment provided by alginate-poly-l-lysine-alginate (APA) microcapsule with liquefied or gelled core on the proliferation, viability, and metabolism of human cells, including anchorage-dependent MCF-7 breast cancer cells and primary fibroblasts, and anchorage-independent K-562 leukemia cells; cells in conventional culture were used as control. The growth pattern of cells in microcapsule was examined by phase-contrast micrography. The cell viability, proliferation, organization, and gene expression were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, hematoxylin and eosin staining, live/dead staining, 5-bromo-20-deoxyuridine labeling, and immunohistochemistry, respectively. Cell metabolism was determined by measuring glucose and lactate concentrations in medium. The results demonstrate that APA microcapsule with liquefied core provides a microenvironment for both anchorage-dependent and anchorage-independent cells to grow into a large cell aggregate and maintain cell viability at a constant level for a period of time. In conclusion, cells in APA microcapsule are alive and have proliferation potential with lower metabolism rate. APA microcapsule may be a useful tool for in vitro tumor cell modeling and anticancer drug screening as well as for cancer gene therapy. In addition, it lays a solid foundation for the use of microencapsulation in cell culture in vitro and cell implantation in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号