首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   51篇
  国内免费   17篇
化学   199篇
力学   1篇
物理学   8篇
综合类   10篇
  2023年   8篇
  2022年   18篇
  2021年   17篇
  2020年   47篇
  2019年   16篇
  2018年   21篇
  2017年   7篇
  2016年   17篇
  2015年   8篇
  2014年   18篇
  2013年   8篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有218条查询结果,搜索用时 46 毫秒
31.
A highly active alternative to Pt electrocatalysts for the oxygen reduction reaction (ORR), which is the cathode‐electrode reaction of fuel cells, is sought for higher fuel‐cell performance. Our theoretical modelling reveals that B‐doped Pd (Pd‐B) weakens the absorption of ORR intermediates with nearly optimal binding energy by lowering the barrier associated with O2 dissociation, suggesting Pd‐B should be highly active for ORR. In fact, Pd‐B, facile synthesized by an electroless deposition process, exhibits 2.2 times and 8.8 times higher specific activity and 14 times and 35 times less costly than commercial pure Pd and Pt catalysts, respectively. Another computational result is that the surface core level of Pd is negatively shifted by B doping, as confirmed by XPS, and implies that filling the density of states related to the anti‐bonding of oxygen to Pd surfaces with excess electrons from B doping, weakens the O bonding to Pd and boosts the catalytic activity.  相似文献   
32.
To achieve sustainable production of H2 fuel through water splitting, low‐cost electrocatalysts for the hydrogen‐evolution reaction (HER) and the oxygen‐evolution reaction (OER) are required to replace Pt and IrO2 catalysts. Herein, for the first time, we present the interface engineering of novel MoS2/Ni3S2 heterostructures, in which abundant interfaces are formed. For OER, such MoS2/Ni3S2 heterostructures show an extremely low overpotential of ca. 218 mV at 10 mA cm?2, which is superior to that of the state‐of‐the‐art OER electrocatalysts. Using MoS2/Ni3S2 heterostructures as bifunctional electrocatalysts, an alkali electrolyzer delivers a current density of 10 mA cm?2 at a very low cell voltage of ca. 1.56 V. In combination with DFT calculations, this study demonstrates that the constructed interfaces synergistically favor the chemisorption of hydrogen and oxygen‐containing intermediates, thus accelerating the overall electrochemical water splitting.  相似文献   
33.
Two‐dimensional (2D) transition‐metal dichalcogenides (TMDs) have drawn much attention due to their unique physical and chemical properties. Using TMDs as templates for the generation of 2D sandwich‐like materials with remarkable properties still remains a great challenge due to their poor solvent processability. Herein, MoS2‐coupled sandwich‐like conjugated microporous polymers (M‐CMPs) with high specific surface area were successfully developed by using functionalized MoS2 nanosheets as template. As‐prepared M‐CMPs were further used as precursors for preparation of MoS2‐embedded nitrogen‐doped porous carbon nanosheets, which were revealed as novel electrocatalysts for oxygen reduction reaction with mainly four‐electron transfer mechanism and ultralow half‐wave potential in comparison with commercial Pt/C catalyst. Our strategy to core–shelled sandwich‐like hybrids paves a way for a new class of 2D hybrids for energy conversion and storage.  相似文献   
34.
随着阴离子交换膜的出现、发展和应用,碱性燃料电池的优势日趋明显,针对碱性燃料电池的研究也更广泛而深刻. 在碱性燃料电池中,除了其固有的对催化剂的高包容性和动力学优越性,阴离子交换膜让阴离子定向迁移,从而实现了很好的水相管理,降低了电池中“水涝”的几率,也提供了更广阔的燃料选择空间. 氧还原反应是碱性燃料电池中的重要部分,且其反应动力学相较于氢氧化反应缓慢. 因此,选择并研制合适的阴极氧还原反应催化剂,是提高碱性燃料电池性能和促进燃料电池规模化使用的关键. Fe-N-C类催化剂因其在碱性条件下接近甚至优于 Pt 基催化剂的性能,被视为最有潜力替代 Pt 的非贵金属催化剂. 本文从近 5 年来 Fe-N-C 类催化剂的合成方法、催化活性位点和氧还原反应机理以及在燃料电池中的应用三方面进行了综述.   相似文献   
35.
为改善电催化活性和亲水性,作者对商业碳黑(BP2000)进行了酸处理,获得了酸处理碳(ATC). 通过X光电子能谱、红外光谱、热重和接触角测试的表征方法证明了酸处理在碳表面产生了丰富的含氧基团. 本文首次利用紫外可见光谱测试了碱性条件抗坏血酸(AA)在空气中的化学氧化活化能,结果为37.1 kJ·mol-1. 另外,利用交流阻抗谱对碱性条件下ATC作为电催化剂时AA的氧化反应的活化能进行了评价. 碱性条件下,AA在单电池中有无ATC电催化剂层条件下的活化能分别为26.5和34.5 kJ·mol-1,活化能的降低表明ATC是一种有效的阳极电催化剂. 作者将ATC应用于直接碱性膜AA燃料电池(DAAFCs)作为阳极电催化剂,并且对DAAFC中一系列参数进行了优化,包括催化剂在膜(CCM)或气体扩散层(CDM)上的喷涂方法、阳极电催化剂的载量、阳极电催化剂中碱性聚合物的比例. 结果表明,采用CCM的膜电极制备方法、0.5 mg·cm-2的ATC载量、25wt%的碱性聚合物添加比例时,DAAFCs单池的功率密度可达18.5 mW·cm-2,远高于使用商品PtRu/C(5 mW·cm-2)做阳极电催化剂的单池. 在寿命测试中,使用溶解于1 mol·L-1 NaOH水溶液中的 0.5 mol·L-1 AA作为燃料(流速15 mL·min-1),DAAFCs单池的功率密度可以在25 min内维持在4 mW·cm-2以上(75 °C).  相似文献   
36.
To enhance the electrocatalytic activity of anode catalysts used in alkaline-media direct methanol fuel cells (DMFCs), a Ni@PdPt electrocatalyst was successfully prepared using a three-phase-transfer method. The Ni@PdPt electrocatalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM) techniques. The experimental results indicate that the average particle size of the core–shell-structured Ni@PdPt electrocatalyst is approximately 5.6 nm. The Ni@PdPt electrocatalyst exhibits a catalytic activity 3.36 times greater than that of PdPt alloys for methanol oxidation in alkaline media. The developed Ni@PdPt electrocatalyst offers a promising alternative as a highly electrocatalytically active anode catalyst for alkaline DMFCs.  相似文献   
37.
In it for the long haul: Clusters of Pt nanowires (3D Pt nanoassemblies, Pt?NA) serve as an electrocatalyst for low-temperature fuel cells. These Pt nanoassemblies exhibit remarkably high stability following thousands of voltage cycles and good catalytic activity, when compared with a commercial Pt?catalyst and 20?%?wt Pt?catalyst supported on carbon black (20?% Pt/CB).  相似文献   
38.
Bimetallic core‐shell nanostructures are emerging as more important materials than monometallic nanostructures, and have much more interesting potential applications in various fields, including catalysis and electronics. In this work, we demonstrate the facile synthesis of core‐shell nanotube array catalysts consisting of Pt thin layers as the shells and Ni nanotubes as the cores. The porous Ni@Pt core‐shell nanotube arrays were fabricated by ZnO nanorod‐array template‐assisted electrodeposition, and they represent a new class of nanostructures with a high electrochemically active surface area of 50.08 m2 (g Pt)?1, which is close to the value of 59.44 m2 (g Pt)?1 for commercial Pt/C catalysts. The porous Ni@Pt core‐shell nanotube arrays also show markedly enhanced electrocatalytic activity and stability for methanol oxidation compared with the commercial Pt/C catalysts. The attractive performances exhibited by these prepared porous Ni@Pt core‐shell nanotube arrays make them promising candidates as future high‐performance catalysts for methanol electrooxidation. The facile method described herein is suitable for large‐scale, low‐cost production, and significantly lowers the Pt loading, and thus, the cost of the catalysts.  相似文献   
39.
We report a first solution strategy for controlled synthesis of Adams’ catalyst (i.e., α‐PtO2) by a facile and totally green approach using H2PtCl6 and water as reactants. The prepared α‐PtO2 nanocrystals (NCs) are ultrasmall in size and have very “clean” surfaces, which can be reduced to Pt NCs easily in ethanol under ambient conditions. Such Adams’ catalysts have been applied as electrocatalysts beyond the field of heterogeneous catalysis. Noticeably, the water‐only synthesized α‐PtO2 NCs and their derivative Pt NCs all exhibit much higher oxygen reduction reaction (ORR) activities and stabilities than that of the state‐of‐art Pt/C electrocatalysts. This study provides an example on the organics‐free synthesis of α‐PtO2 and Pt NCs as promising cathode catalysts for fuel cell applications and, particularly, this simple, straightforward method may open a new way for the synthesis of other “clean” functional nanomaterials.  相似文献   
40.
Strongly correlated catalysts can be understood from precise quantum approximations. Incorporating properly electronic correlations thus let’s define Spin rules in catalysis, opening a new door towards optimum compositions for the most important reactions for a sustainable future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号