首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   51篇
  国内免费   17篇
化学   197篇
力学   1篇
物理学   8篇
综合类   10篇
  2023年   8篇
  2022年   16篇
  2021年   17篇
  2020年   47篇
  2019年   16篇
  2018年   21篇
  2017年   7篇
  2016年   17篇
  2015年   8篇
  2014年   18篇
  2013年   8篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有216条查询结果,搜索用时 15 毫秒
21.
Iridium-based oxides are highly active as oxygen evolving electrocatalysts in PEM water electrolyzers. In this work XRD reveals that Ir-Sn oxides contain a single rutile phase with lattice parameters between those of pure IrO2 and SnO2. Addition of Ru leads to the synthesis of a core-shell type material due to the strong agglomeration of Ru colloids during the preparation procedure. The shell of this material consists of an Ir-Sn-Ru oxide deficient in Ru relative to the bulk. This leads to a decrease in the surface noble metal concentration (as found by XPS), which in turn results in a significant reduction in electrochemically active surface area. Polarization analysis indicates that the addition of Ru can influence the rate-determining step or mechanism by which oxygen is evolved. In a PEM water electrolysis cell, small additions of Sn do not significantly reduce the operating performance, however larger additions cause a performance loss due to a reduction in active surface area and increased ohmic resistance. When a pure IrO2 anode is used, a cell voltage is 1.61 V at 1 A cm−2 and 90°C. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 10, pp. 1260–1267. The text was submitted by the authors in English.  相似文献   
22.
23.
Recently, nonmetal doping has exhibited its great potential for boosting the hydrogen evolution reaction (HER) of transition-metal (TM)-based electrocatalysts. To this end, this work overviews the recent achievements made on the design and development of the nonmetal-doped TM-based electrocatalysts and their performance for the HER. It is also shown that by rationally doping nonmetal elements, the electronic structures of TM-based electrocatalysts can be effectively tuned and in turn the Gibbs free energy of the TM for adsorption of H* intermediates (ΔGH*) optimized, consequently enhancing the intrinsic activity of TM-based electrocatalysts. Notably, we highlight that concurrently doping two nonmetal elements can continuously and precisely regulate the electronic structures of the TM, thereby maximizing the activity for HER. Moreover, nonmetal doping also accounts for enhancing the physical properties of the TM (i.e. surface area). Therefore, nonmetal doping is a robust strategy for simultaneous regulation of the chemical and physical features of the TM.  相似文献   
24.
25.
The oxygen reduction reaction (ORR) is one of the most important reactions in life processes and energy conversion systems. To alleviate global warming and the energy crisis, the development of high-performance electrocatalysts for the ORR for application in energy conversion and storage devices such as metal–air batteries and fuel cells is highly desirable. Inspired by the biological oxygen activation/reduction process associated with heme- and multicopper-containing metalloenzymes, iron and copper-based transition-metal complexes have been extensively explored as ORR electrocatalysts. Herein, an outline into recent progress on non-precious-metal electrocatalysts for the ORR is provided; these electrocatalysts do not require pyrolysis treatment, which is regarded as desirable from the viewpoint of bioinspired molecular catalyst design, focusing on iron/cobalt macrocycles (porphyrins, phthalocyanines, and corroles) and copper complexes in which the ORR activity is tuned by ligand variation/substitution, the method of catalyst immobilization, and the underlying supporting materials. Current challenges and exciting imminent developments in bioinspired ORR electrocatalysts are summarized and proposed.  相似文献   
26.
27.
Ni Suo 《中国物理 B》2022,31(12):128108-128108
Proton-exchange membrane fuel cells (PEMFCs) have been widely used commercially to solve the energy crisis and environmental pollution. The oxygen reduction reaction (ORR) at the cathode is the rate-determining step in PEMFCs. Platinum (Pt) catalysts are used to accelerate the ORR kinetics. Pt's scarcity, high cost, and instability in an acidic environment at high potentials seriously hinder the commercialization of PEMFCs. Therefore, studies should explore electrocatalysts with high catalytic activity, enhanced stability, and low-Pt loading. This review briefly introduces the research progress on Pt and Pt-based ORR electrocatalysts for PEMFCs, including anticorrosion catalyst supports, Pt, and Pt-based alloy electrocatalysts. Advanced preparation technology and material characterization of Pt-based ORR electrocatalysts are necessary to improve the performance and corresponding reaction mechanisms.  相似文献   
28.
Breaking the electroneutrality of sp2 carbon lattice is a viable way for nanocarbon material to modulate the charge delocalization and to further alter the electrocatalytic activity. Positive charge spreadsheeting is preferable for catalyzing the oxygen reduction reaction (ORR) and other electrochemical reactions. Analogously to the case of intramolecular charge transfer by heteroatom doping, electrons in the conjugated carbon lattice can be redistributed by the intermolecular charge transfer from the nanocarbon material to the polyelectrolyte. A copolymeric electrolyte, epichlorohydrin-dimethylamine copolymer (EDC) was synthesized. The EDC-modified carbon nanotube (CNT) hybrid was subsequently fabricated by sonication treatment and served as a metal-free carbonaceous electrocatalyst with remarkable catalytic activity and stability. The resultant hybrid presents positive charge spreadsheeting on CNT as a result of the interfacial electron transfer from CNT to EDC. DFT calculations were further carried out to reveal that the enhancement of the wrapped EDC polyelectrolyte originates from the synergetic effect of the quaternary ammonium-hydroxyl covalently bonded structure. The CNT-EDC hybrid not only provides an atomically precise regulation to modulate nanocarbon materials from inactive carbonaceous materials into efficient metal-free catalysts, but it also opens new avenues to develop metal-free catalysts with well-defined and highly active sites.  相似文献   
29.
In order to improve the hydrophilicity and electrocatalytic activity, commercial carbon black (BP 2000) was subjected to acid treatment to obtain acid-treated carbon (ATC).The generation of rich oxygen-containing groups on the surface of the ATC was proved by X-ray photoelectron spectra (XPS), Fourier transform-infra red spectra (FTIR), thermogravimetric analysis (TG) and contact angle measurement.UV-vis spectra were firstly recorded to calculate activation energy (Ea) of ascorbic acid (AA) chemical oxidation in alkaline conditions by oxygen in air and the Ea value was determined to be 37.1 kJ·mol-1.Additionally, electrochemical impedance spectra (EIS) were used to evaluate unprecedented Eaelectrochem of ATC as electrocatalysts toward ascorbic acid (AA) oxidation in alkaline media.The Eaelectrochem values of electrochemical oxidation in alkaline membrane electrode assembly (MEA) setup of a single cell without and with ATC as the anodic electrocatalysts were calculated to be 34.5 and 26.5 kJ·mol-1, respectively.The diminished Eaelectrochem suggests that ATC does function as an effective anodic electrocatalyst.Furthermore, the ATC was applied in direct ascorbic acid alkaline membrane fuel cell (DAAFC) for the first time.We optimized a series of parameters for the fabrication of MEAs including catalyst coated membrane (CCM) or catalyst coated gas diffusion layer membrane (CDM), loading of anodic electrocatalyst, and ionomer content in the electrocatalyst slurry.It turned out that the CCM with the ATC loading of 0.5 mg·cm-2 and 25wt% ionomer reached a high power density of 18.5 mW·cm-2, which is higher than that of using PtRu/C as anodic electrocatalyst (less than 5.0 mW·cm-2).In addition, the DAAFC fed with 15 mL·min-1 of the fuel containing 0.5 mol·L-1 AA and 1 mol·L-1 NaOH aq.could stably hold a power density at 4 mW·cm-2 for 25 min. © 2018 Journal of Electrochemistry. All rights reserved.  相似文献   
30.
PtRuIn/C electrocatalysts( 20% metal loading by weight) were prepared by sodium borohydride reduction process using H_2PtCl6·6H_2O,RuCl_3·xH_2O and InCl_3·xH_2O as metal sources,borohydride as reducing agent and Carbon Vulcan XC72 as support. The synthetized PtRuIn/C electrocatalysts were characterized by X-ray diffraction( XRD),energy dispersive analysis( EDX),transmission electron microscopy( TEM),cyclic voltammetry( CV),chronoamperommetry( CA) and polarization curves in alkaline and acidic electrolytes( single cell experiments). The XRD patterns showPtpeaks are attributed to the face-centered cubic( fcc) structure,and a shift of Pt( fcc) peaks indicates that Ru or In is incorporated into Ptlattice. TEMmicrographs showmetal nanoparticles with an average nanoparticle size between 2.7 and 3.5 nm. Methanol oxidation in acidic and alkaline electrolytes was investigated at room temperature,by CV and CA. PtRu/C( 50 ∶ 50) shows the highest activity among all electrocatalysts in study considering methanol oxidation for acidic and alkaline electrolyte. Polarization curves at 80 ℃ showPtRuIn/C( 50 ∶ 25 ∶ 25)with superior performance for methanol oxidation,when compared to Pt/C,PtIn/C and PtRu/C for both electrolytes. The best performance obtained by PtRuIn/C( 50 ∶ 25 ∶ 25) in real conditions could be associated with the increased kinetics reaction and/or with the occurrence simultaneously of the bifunctional mechanism and electronic effect resulting from the presence of Ptalloy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号