首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1818篇
  免费   142篇
  国内免费   247篇
化学   470篇
晶体学   24篇
力学   79篇
综合类   6篇
数学   287篇
物理学   399篇
综合类   942篇
  2024年   3篇
  2023年   17篇
  2022年   33篇
  2021年   38篇
  2020年   35篇
  2019年   34篇
  2018年   39篇
  2017年   55篇
  2016年   41篇
  2015年   50篇
  2014年   71篇
  2013年   107篇
  2012年   108篇
  2011年   136篇
  2010年   90篇
  2009年   110篇
  2008年   113篇
  2007年   115篇
  2006年   129篇
  2005年   99篇
  2004年   95篇
  2003年   97篇
  2002年   78篇
  2001年   77篇
  2000年   61篇
  1999年   47篇
  1998年   46篇
  1997年   42篇
  1996年   38篇
  1995年   33篇
  1994年   28篇
  1993年   27篇
  1992年   25篇
  1991年   25篇
  1990年   14篇
  1989年   19篇
  1988年   13篇
  1987年   9篇
  1986年   4篇
  1985年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1955年   1篇
排序方式: 共有2207条查询结果,搜索用时 312 毫秒
21.
采用水热晶化反应,制备出传统需要高温固相反应合成的掺杂NASICON化合物Na(1-x)Zr(2-x)NbxP3O12(0<x<1),并应用XRD、IR方法对产物的晶体结构进行了研究,表明水热晶化产物是纯的物相并具有与NaZr2P3O12相同的结构.固体31PNMR研究证实Nb(5+)部分取代了Zr(4+)所在位置,参与骨架的组成,并统计分布于结构中.水热晶化产物与固相反应产物具有相同的离子电导性能.  相似文献   
22.
The new lithium ionic conductors, thio-LISICON (LIthium SuperIonic CONductor), were found in the ternary Li2S-SiS2-Al2S3 and Li2S-SiS2-P2S5 systems. Their structures of new materials, Li4+xSi1−xAlxS4 and Li4−xSi1−xPxS4 were determined by X-ray Rietveld analysis, and the electric and electrochemical properties were studied by electronic conductivity, ac conductivity and cyclic voltammogram measurements. The structure of the host material, Li4SiS4 is related to the γ-Li3PO4-type structure, and when the Li+ interstitials or Li+ vacancies were created by the partial substitutions of Al3+ or P5+ for Si4+, large increases in conductivity occur. The solid solution member x=0.6 in Li4−xSi1−xPxS4 showed high conductivity of 6.4×10-4 S cm−1 at 27°C with negligible electronic conductivity. The new solid solution, Li4−xSi1−xPxS4, also has high electrochemical stability up to ∼5 V vs Li at room temperature. All-solid-state lithium cells were investigated using the Li3.4Si0.4P0.6S4 electrolyte, LiCoO2 cathode and In anode.  相似文献   
23.
An investigation into the effects of mechanical treatment and hydration on the order of cellulose substrates (microcrystalline cellulose and Cladophora cellulose) was performed by the use of ball milling followed by cyclic wetting and drying. The results, monitored by13C-CP/MAS NMR-spectroscopy, were evaluated by calculation of the crystallinity indices and principal component analysis of the NMR data acquired. The results showed that a large part of the disorder induced by the mechanical treatment of cellulose by ball milling is reversible and reordering upon hydration leads to the cellulose I form initially present. The C4 signals corresponding to the reversibly disordered cellulose chains are observed in the amorphous region between 79 and 86 ppm in the13C-CP/MAS NMR-spectra together with signals from cellulose chains on the surface of ordered regions. The peak cluster which contains the C2, C3 and C5 ring carbons can be divided into two specific spectral regions; one between 74 and 77 ppm largely originates from ring carbons within disordered cellulose structures, and one between 70 and 74 ppm contains larger contributions from ordered cellulose. The behaviour of the celluloses upon milling is in accordance with a concept of ordered cellulose fibrils containing amorphous cellulose mainly as surface layers and induced reversible lattice distortions.  相似文献   
24.
The electrical properties of polycrystalline lithium chloroboracite, Li4B7O12Cl, prepared by the sol-gel method were investigated in connection with their structure. Li4B7O12Cl pellets were prepared with different amounts of hydrochloric acid or ammonium chloride. The kind and amount of the chlorine source affected the formation of by-products (Li2B4O7, LiCl, a glass phase) and the morphology of the Li4B7O12Cl pellets. Thus their conductivity, which is dominated by grain boundary response owing to the high porosity of the materials, was also affected. The formation of Li2B4O7 as a by-product led to a higher activation energy and lower conductivity. In those pellets in which Li2B4O7 did form, an increase of the amount of glass phase led to higher conductivities.  相似文献   
25.
The surface and materials science of tin oxide   总被引:3,自引:0,他引:3  
The study of tin oxide is motivated by its applications as a solid state gas sensor material, oxidation catalyst, and transparent conductor. This review describes the physical and chemical properties that make tin oxide a suitable material for these purposes. The emphasis is on surface science studies of single crystal surfaces, but selected studies on powder and polycrystalline films are also incorporated in order to provide connecting points between surface science studies with the broader field of materials science of tin oxide. The key for understanding many aspects of SnO2 surface properties is the dual valency of Sn. The dual valency facilitates a reversible transformation of the surface composition from stoichiometric surfaces with Sn4+ surface cations into a reduced surface with Sn2+ surface cations depending on the oxygen chemical potential of the system. Reduction of the surface modifies the surface electronic structure by formation of Sn 5s derived surface states that lie deep within the band gap and also cause a lowering of the work function. The gas sensing mechanism appears, however, only to be indirectly influenced by the surface composition of SnO2. Critical for triggering a gas response are not the lattice oxygen concentration but chemisorbed (or ionosorbed) oxygen and other molecules with a net electric charge. Band bending induced by charged molecules cause the increase or decrease in surface conductivity responsible for the gas response signal. In most applications tin oxide is modified by additives to either increase the charge carrier concentration by donor atoms, or to increase the gas sensitivity or the catalytic activity by metal additives. Some of the basic concepts by which additives modify the gas sensing and catalytic properties of SnO2 are discussed and the few surface science studies of doped SnO2 are reviewed. Epitaxial SnO2 films may facilitate the surface science studies of doped films in the future. To this end film growth on titania, alumina, and Pt(1 1 1) is reviewed. Thin films on alumina also make promising test systems for probing gas sensing behavior. Molecular adsorption and reaction studies on SnO2 surfaces have been hampered by the challenges of preparing well-characterized surfaces. Nevertheless some experimental and theoretical studies have been performed and are reviewed. Of particular interest in these studies was the influence of the surface composition on its chemical properties. Finally, the variety of recently synthesized tin oxide nanoscopic materials is summarized.  相似文献   
26.
Formation and chemical properties of amorphous AgVO3, which was prepared by mechanochemical treatment of an Ag2O-V2O5 mixture, and crystalline AgVO3 were studied in relation to AgVO3 polymorphs. A ball-milled sample of the mixture was assigned as a highly deformed β-AgVO3 rather than the low density phase α-AgVO3. Crystalline α-AgVO3 and β-AgVO3 were converted into deformed β-AgVO3 by ball milling, which produced a clear change. δ-AgVO3 is resistant to mechanical treatment and its structure was not markedly affected. The dissolved chemical species from the ball-milled sample precipitates to form α-AgVO3 without a seeding crystal, but other polymorphs deposit if they are present; i.e., β-AgVO3 and δ-AgVO3 grow on the seeding crystal.  相似文献   
27.
18O/16O isotope exchange depth profiling (IEDP) combined with secondary ion mass spectrometry (SIMS) has been used to measure the oxygen tracer diffusivity of SrCe0.95Yb0.05O3– between 800 °C and 500 °C at a nominal pressure of 200 mbar. The values of D* (oxygen tracer diffusion coefficient) and k (surface exchange coefficient) increase steadily with increasing temperature, and the activation energies are 1.13 eV and 0.96 eV, respectively. Oxygen ion conductivities have been calculated using the Nernst–Einstein equation. The transport number for oxide ions at 769 °C, the highest temperature studied, is only ~0.05. Moreover, SrCe0.95Yb0.05O3– has been studied using impedance spectroscopy under dry O2, wet O2 and wet H2 (N2/10% H2) atmospheres, over the range 850–300 °C. Above ~550 °C, SrCe0.95Yb0.05O3– shows higher conductivity in dry O2 than in wet O2 or wet H2; below that temperature the results obtained for the three atmospheres are comparable. Dry O2 shows the highest activation energy (0.77 eV); the activation energies for wet O2 and wet H2 are identical (0.62 eV).Abbreviations HTPC high-temperature proton conductor - IEDP isotope exchange depth profiling - SIMS secondary ion mass spectrometryPresented at the OSSEP Workshop Ionic and Mixed Conductors: Methods and Processes, Aveiro, Portugal, 10–12 April 2003  相似文献   
28.
可溶性聚苯胺的合成及研究   总被引:23,自引:5,他引:23  
本文报道了可溶性聚苯胺(PAn)的合成方法。通过对比可溶和不可溶PAn的导电性、电化学行为及IR光谱,说明它们的分子链基本结构相同。并测得了PAn在DMF-d_7中的~13C-NMR 谱。  相似文献   
29.
One of the limiting factors restricting the effective and efficient bioconversion of softwood-derived lignocellulosic residues is the recalcitrance of the substrate following pretreatment. Consequently, the ensuing enzymatic process requires relatively high enzyme loadings to produce monomeric carbohydrates that are readily fermentable by ethanologenic microorganisms. In an attempt to circumvent the need for larger enzyme loadings, a simultaneous physical and enzymatic hydrolysis treatment was evaluated. A ball-mill reactor was used as the digestion vessel, and the extent and rate of hydrolysis were monitored. Concurrently, enzyme adsorption profiles and the rate of conversion during the course of hydrolysis were monitored. α-Cellulose, employed as a model substrate, and SO2-impregnated steam-exploded Douglas-fir wood chips were assessed as the cellulosic substrates. The softwood-derived substrate was further posttreated with water and hot alkaline hydrogen peroxide to remove >90% of the original lignin. Experiments at different reaction conditions were evaluated, including substrate concentration, enzyme loading, reaction volumes, and number of ball beads employed during mechanical milling. It was apparent that the best conditions for the enzymatic hydrolysis of α-cellulose were attained using a higher number of beads, while the presence of air-liquid interface did not seem to affect the rate of saccharification. Similarly, when employing the lignocellulosic substrate, up to 100% hydrolysis could be achieved with a minimum enzyme loading (10 filter paper units/g of cellulose), at lower substrate concentrations and with a greater number of reaction beads during milling. It was apparent that the combined strategy of simultaneous ball milling and enzymatic hydrolysis could improve the rate of saccharification and/or reduce the enzyme loading required to attain total hydrolysis of the carbohydrate moieties.  相似文献   
30.
本文以多种聚醚为软段,二异氰酸酯(MDI和TDI)为硬段,合成了多嵌段聚醚聚氨酯,以此聚氨酯为基材,与NaH及1,3-丙碳酸内酯反应,进一步合成了一系列不同离子化程度的阴离子型碳化聚氨酯离聚物,用交流阻抗谱仪测定了样品的阻抗谱,由此计算出样品的离子电导率。研究结果表明其他条件相同时,以聚乙二醇(PEG)为软段的样品具有较高的离子电导率;以聚环氧丙烷(PPO)为软段的样品次之,以聚四氢呋喃(PTMO)为软段的样品最低,对于离子化程度不同的聚氨酯离聚物以金属离子和烷氧单元之比为0.05时导电性能最好。阳离子为Li+和Na+的样品具有相近的离子电导率。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号