首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2810篇
  免费   334篇
  国内免费   255篇
化学   466篇
晶体学   3篇
力学   149篇
综合类   39篇
数学   1001篇
物理学   340篇
综合类   1401篇
  2024年   10篇
  2023年   37篇
  2022年   77篇
  2021年   85篇
  2020年   98篇
  2019年   79篇
  2018年   75篇
  2017年   92篇
  2016年   112篇
  2015年   109篇
  2014年   147篇
  2013年   202篇
  2012年   142篇
  2011年   158篇
  2010年   131篇
  2009年   142篇
  2008年   149篇
  2007年   177篇
  2006年   145篇
  2005年   153篇
  2004年   119篇
  2003年   115篇
  2002年   122篇
  2001年   84篇
  2000年   107篇
  1999年   79篇
  1998年   53篇
  1997年   59篇
  1996年   40篇
  1995年   32篇
  1994年   45篇
  1993年   35篇
  1992年   30篇
  1991年   23篇
  1990年   16篇
  1989年   23篇
  1988年   29篇
  1987年   16篇
  1986年   14篇
  1985年   5篇
  1984年   8篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1974年   2篇
  1955年   1篇
  1936年   1篇
排序方式: 共有3399条查询结果,搜索用时 0 毫秒
101.
An advanced dual pH- and temperature-sensitive hydrogel (NASH2.5) was optimally synthesized through modification of N-isopropylacrylamide (NIPAM) hydrogel with introducing 5 mol% acrylic acid (AA) and 2.5 wt% sewage sludge ash (SSA). The swelling kinetic results showed that NASH2.5 exhibited both high equilibrium swelling ratio and swelling rate, which was attributed to the higher porous structure as shown in scanning electron microscope, and the more hydrogen bonding formed inside of the hydrogel as investigated in Fourier transform infrared spectrometer. In addition, its curve was better fitted to the pseudo-second-order model, indicating that the water absorption process was dominated by chemisorption through forming the hydrogen bonding among the water molecules and carboxyl/silanol groups of the hydrogel. Compared with the pure NIPAM hydrogel, the water transport mechanism switched from Case I diffusion to Case II diffusion by introduction of AA and further SSA. Furthermore, through the results of the deswelling kinetics in pH value change (from 9 to 4 and 2, respectively), temperature value change (from 25 to 40, 50, and 60°C, respectively), and dual pH and temperature values changes, NASH2.5 not only presented a high pH sensitivity, but also showed high sensitive to temperature by achieving high water recovery ratio in rapid dehydrated rate. Therefore, the dual stimuli-sensitive hydrogel with the simultaneously high performance of swelling and deswelling would provide a suitable alternative for specific applications such as pollutant adsorption.  相似文献   
102.
Iodoarene catalysis is a powerful methodology that usually requires an excess of oxidant, or of redox mediator if the terminal oxidant is dioxygen, to generate the key hypervalent iodine intermediate to proceed efficiently. We report that, using the spiro‐cyclization of amides as a benchmark reaction, aerobic iodoarene catalysis can be enabled by relying on a pyrylium photocatalyst under blue light irradiation. This unprecedented dual organocatalytic system allows the use of low catalytic loading of both catalysts under very mild operating conditions.  相似文献   
103.
ABSTRACT

We prepared nano/microgels by precipitation copolymerization of N-isopropylacrylamide (NIPAAm), and one of three different carboxyalkyl methacrylamides [methacryloylamido hexanoic acid (M5), 8-methacryloylamido octanoic acid (M7), and 11-methacryloylamido undecanoic acid (M10)], either in the acid forms or as carboxylates (potassium salts). The hydrodynamic diameter (Dh) of the nano/microgels prepared with the carboxylates was smaller (≈100 nm for M10 copolymers), compared to the size of homopolymeric NIPAAm microgels prepared by dispersion polymerization (around 600 nm), indicating that the carboxylates act as surfactants reducing the size of the seeds during the polymerization process. These materials presented a swollen-shrunken transition temperature (T tr) similar to the T tr of the homopolymeric NIPAAm microgels, without pH sensitivity. On the other hand, the copolymeric microgels prepared from the acid form of the comonomers have a similar or bigger size than NIPAAm microgels. For these copolymers, the T tr can be tuned by the type and proportion of acid comonomer used and present pH sensitivity. This is important for biomedical applications such as positive temperature control release. Polyelectrolyte titration demonstrates that the nano/microgels prepared with the carboxylates behave as hard spheres, while the microgels prepared with the weak acid behave as porous materials.  相似文献   
104.
We introduce a set of multi-way dual Cheeger constants and prove universal higher-order dual Cheeger inequalities for eigenvalues of normalized Laplace operators on weighted finite graphs. Our proof proposes a new spectral clustering phenomenon deduced from metrics on real projective spaces. We further extend those results to a general reversible Markov operator and find applications in characterizing its essential spectrum.  相似文献   
105.
Trifluoromethylation of propargylic alcohols to provide (Z)‐α‐trifluoromethylated enones and β‐unsubstituted α‐trifluoromethylated enones proceeded with high yield and selectivity in the presence of CuI/Re2O7. The Z isomer was formed under kinetic control, though it is less stable than the E isomer in terms of steric repulsion.  相似文献   
106.
Three new NPI–BODIPY dyads 1 – 3 (NPI=1,8‐naphthalimide, BODIPY=boron‐dipyrromethene) were synthesized, characterized, and studied. The NPI and BODIPY moieties in these dyads are electronically separated by oxoaryl bridges, and the compounds only differ structurally with respect to methyl substituents on the BODIPY fluorophore. The NPI and BODIPY moieties retain their optical features in molecular dyads 1 – 3 . Dyads 1–3 show dual emission in solution originating from the two separate fluorescent units. The variations of the dual emission in these compounds are controlled by the structural flexibilities of the systems. Dyads 1 – 3 , depending on their molecular flexibilities, show considerably different spectral shapes and dissimilar intensity ratios of the two emission bands. The dyads also show significant aggregation‐induced emission switching (AIES) on formation of nano‐aggregates in THF/H2O with changes in emission color from green to red. Whereas the flexible and aggregation‐prone compound 1 shows AIES, rigid systems with less favorable intermolecular interactions (i.e., 2 and 3 ) show aggregation‐induced quenching of emission. Correlations of the emission intensity and structural flexibility were found to be reversed in solution and aggregated states. Photophysical and structural investigations suggested that intermolecular interactions (e.g., π–π stacking) play a major role in controlling the emission of these compounds in the aggregated state.  相似文献   
107.
Design of highly efficient phosphorescent emitters based on metal‐ and heavy atom‐free boron compounds has been demonstrated by taking advantage of the singlet fission process. The combination of a suitable molecular scaffold and appropriate electronic nature of the substituents has been utilized to tailor the phosphorescence emission properties in solution, neat solid, and in doped PMMA thin films.  相似文献   
108.
This paper reports the development of a dual immunosensor using magnetic microcarriers (MBs) and amperometric transduction at dual screen‐printed carbon electrodes (SPdCEs) for the simultaneous determination of two biomarkers: interleukin‐13 receptor α2 (IL‐13Rα2) and E‐cadherin (E‐CDH), with both extracellular and soluble fraction; oncogenic and tumor suppressor markers, respectively, of great relevance in metastatic processes. The implemented methodology involved the formation of sandwich‐type immunocomplexes using specific capture antibodies immobilized onto carboxylic acid magnetic microbeads (HOOC‐MBs), and biotinylated detector antibodies labeled with streptavidin?horseradish peroxidase conjugates (Strep‐HRP). The amperometric detection was performed by addition of hydrogen peroxide in the presence of hydroquinone (HQ) as the redox mediator. The dual immunosensing platform provided linear calibration ranges suitable for the determination of both biomarkers in liquid and solid clinical specimens as well as excellent selectivity against other cancer biomarkers. This simple handling dual bioplatform was applied to the determination of the soluble and extracellular fraction of the target biomarkers in serum and paraffined‐embedded tissues from colorectal cancer (CRC) patients diagnosed at different tumor grade. The obtained results reveal great potential of this configuration to improve the reliability in diagnosing metastatic CRC.  相似文献   
109.
In this work, dual‐mode antibacterial conjugated polymer nanoparticles (DMCPNs) combined with photothermal therapy (PTT) and photodynamic therapy (PDT) are designed and explored for efficient killing of ampicillin‐resistant Escherichia coli (Ampr E. coli). The DMCPNs are self‐assembled into nanoparticles with a size of 50.4 ± 0.6 nm by co‐precipitation method using the photothermal agent poly(diketopyrrolopyrrole‐thienothiophene) (PDPPTT) and the photosensitizer poly[2‐methoxy‐5‐((2‐ethylhexyl)oxy)‐p‐phenylenevinylene] (MEH‐PPV) in the presence of poly(styrene‐co‐maleic anhydride) which makes nanoparticles disperse well in water via hydrophobic interactions. Thus, DMCPNs simultaneously possess photothermal effect and the ability of sensitizing oxygen in the surrounding to generate reactive oxygen species upon the illumination of light, which could easily damage resistant bacteria. Under combined irradiation of near‐infrared light (550 mW cm?2, 5 min) and white light (65 mW cm?2, 5 min), DMCPNs with a concentration of 9.6 × 10?4 µm could reach a 93% inhibition rate against Ampr E. coli, which is higher than the efficiency treated by PTT or PDT alone. The dual‐mode nanoparticles provide potential for treating pathogenic infections induced by resistant microorganisms in clinic.  相似文献   
110.
Arenes with β‐stereogenic centers are important substructures in pharmaceuticals and natural products. We have developed an asymmetric anti‐Markovnikov hydroarylation of 1,1‐disubstituted olefins by dual palladium and copper hydride catalysis as a convenient and general approach to access these substructures. This efficient one‐step process addresses several limitations of the traditional stepwise approaches. The use of cesium benzoate as a base and a common phosphine ligand for both the Cu‐ and Pd‐catalyzed processes were important discoveries that allow these challenging olefin substrates to be efficiently transformed. A variety of aryl bromide coupling partners, including numerous heterocycles, were coupled with 1,1‐disubstituted alkenes to generate arenes with β‐stereogenic centers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号