首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   24篇
  国内免费   125篇
化学   447篇
晶体学   1篇
力学   1篇
综合类   1篇
物理学   13篇
综合类   39篇
  2024年   2篇
  2023年   3篇
  2022年   8篇
  2021年   16篇
  2020年   9篇
  2019年   9篇
  2018年   10篇
  2017年   14篇
  2016年   18篇
  2015年   11篇
  2014年   9篇
  2013年   24篇
  2012年   23篇
  2011年   24篇
  2010年   16篇
  2009年   21篇
  2008年   31篇
  2007年   34篇
  2006年   34篇
  2005年   44篇
  2004年   40篇
  2003年   43篇
  2002年   14篇
  2001年   17篇
  2000年   14篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有502条查询结果,搜索用时 31 毫秒
171.
Dendrimers are having novel three dimensional, synthetic hyperbranched, nano-polymeric structure. Among all of the dendrimers, Poly-amidoamine (PAMAM) dendrimer are used enormously applying materials in supramolecular chemistry. This review described the structure, characteristic, synthesis, toxicity, and surface modification of PAMAM dendrimer. Various strategies in supramolecular chemistry of PAMAM for synthesizing it at commercial and laboratory scales along with their limitations and applications has also discussed. When compared to other nano polymers, the characteristics of supramolecular PAMAM dendrimers in nanopolymer science has shown significant achievement in transporting drugs for molecular targeted therapy, particularly in host–guest reaction. It also finds its applications in gene transfer devices and imaging of biological systems with minimum cytotoxicity. From that viewpoint, this review has elaborated the structural and safety aspect of PAMAM for targeted drug delivery with pharmaceuticals in addition to the biomedical application.  相似文献   
172.
近20年来树状大分子由于其特殊的结构而引起了科学家们的广泛关注;作为一类新型的高负载量载体应用于有机合成和催化是树状大分子重要的应用领域之一。本文主要介绍树状大分子和树脂固载树状大分子两类载体,重点对它们作为高负载量载体在有机合成和非均相催化反应中的应用研究进行了总结。  相似文献   
173.
一类新的多分枝大分子   总被引:4,自引:0,他引:4  
陈亚雄 《有机化学》1990,10(4):289-297
本文介绍了一类新的瀑布状的多分枝大分子(cascade)。这种合成方法可以很精确地控制大分子的形状和分子量。最后展望了这类大分子在生态学、工业与医学方面可能的应用。  相似文献   
174.
High‐resolution images of oxygen distributions in microheterogeneous samples are obtained by two‐photon laser scanning microscopy (2P LSM), using a newly developed dendritic nanoprobe with internally enhanced two‐photon absorption (2PA) cross‐section. In this probe, energy is harvested by a 2PA antenna, which passes excitation onto a phosphorescent metalloporphyrin via intramolecular energy transfer. The 2P LSM allows sectioning of oxygen gradients with near diffraction‐limited resolution, and lifetime‐based acquisition eliminates dependence on the local probe concentration. The technique is validated on objects with a priori known oxygen distributions and applied to imaging of pO2 in cells.  相似文献   
175.
T-cells play critical roles in various immune reactions, and genetically engineered T-cells have attracted attention for the treatment of cancer and autoimmune diseases. Previously, it is shown that a polyamidoamine dendrimer of generation 4 (G4), modified with 1,2-cyclohexanedicarboxylic anhydride (CHex) and phenylalanine (Phe) (G4-CHex-Phe), is useful for delivery into T-cells and their subsets. In this study, an efficient non-viral gene delivery system is constructed using this dendrimer. Ternary complexes are prepared using different ratios of plasmid DNA, Lipofectamine, and G4-CHex-Phe. A carboxy-terminal dendrimer lacking Phe (G3.5) is used for comparison. These complexes are characterized using agarose gel electrophoresis, dynamic light scattering, and ζpotential measurements. In Jurkat cells, the ternary complex with G4-CHex-Phe at a P/COOH ratio of 1/5 shows higher transfection activity than other complexes, such as binary and ternary complexes with G3.5, without any significant cytotoxicity. The transfection efficiency of the G4-CHex-Phe ternary complexes decreases considerably in the presence of free G4-CHex-Phe and upon altering the complex preparation method. These results suggest that G4-CHex-Phe promotes the cellular internalization of the complexes, which is useful for gene delivery into T-cells.  相似文献   
176.
Methods based on immunoassays have been developed for cardiac biomarkers, but most involve the low sensitivity and are unsuitable for early disease diagnosis. Herein we design an electrochemical immunoassay for sensitive detection of myoglobin (a cardiac biomarker for acute myocardial infarction) by using nanogold-penetrated poly(amidoamine) dendrimer (AuNP-PAMAM) for signal amplification without the need of natural enzymes. The assay was carried out on the monoclonal mouse anti-myoglobin (capture) antibody-anchored glassy carbon electrode using polyclonal rabbit anti-myoglobin (detection) antibody-labeled AuNP-PAMAM as the signal tag. In the presence of target myoglobin, the sandwiched immunocomplex could be formed between capture antibody and detection antibody. Accompanying AuNP-PAMAM, the carried gold nanoparticles could be directly determined via stripping voltammetric method under acidic conditions. Under optimal conditions, the detectable electrochemical signal increased with the increasing target myoglobin in the sample within a dynamic working range from 0.01 to 500 ng mL−1 with a detection limit of 3.8 pg mL−1. The electrochemical immunoassay also exhibited high specificity and good precision toward target myoglobin. Importantly, our strategy could be applied for quantitative monitoring of myoglobin in human serum specimens, giving well matched results with those obtained from commercialized enzyme-linked immunosorbent assay (ELISA) method.  相似文献   
177.
Controlling microscopic or macroscopic alignment of liquid crystalline dendrimers (LCDrs) in a porous media is an important feature for their possible potential applications. Here, we investigate structural and alignment behaviours of model LCDr system confined in a slit pore made of two parallel impenetrable walls. Isobaric–isothermal (NPT) Monte Carlo computational simulation method is used. A coarse-grained force field for inter-/intra-dendritic and LCDr-substrate interactions has been established. The inner surfaces of confining walls are made to induce homeotropic anchoring condition. According to simulation results, a variety of stable-ordered LCDr system states have been observed and analysed depending on the temperature and pressure.  相似文献   
178.
Nature has provided a highly optimized toolbox in bacterial endotoxins with precise functions dictated by their clear structural division. Inspired by this streamlined design, a supramolecular approach capitalizing on the strong biomolecular (streptavidin (SA))–biotin interactions is reported herein to prepare two multipartite fusion constructs, which involves the generation 2.0 (D2) or generation 3.0 (D3) polyamidoamine‐dendronized transporter proteins (dendronized streptavidin (D3SA) and dendronized human serum albumin (D2HSA)) non‐covalently fused to the C3bot1 enzyme from Clostridium botulinum, a potent and specific Rho‐inhibitor. The fusion constructs, D3SA‐C3 and D2HSA‐C3, represent the first examples of dendronized protein transporters that are fused to the C3 enzyme, and it is successfully demonstrated that the C3 Rho‐inhibitor is delivered into the cytosol of mammalian cells as determined from the characteristic C3‐mediated changes in cell morphology and confocal microscopy. The design circumvents the low uptake of the C3 enzyme by eukaryotic cells and holds great promise for reprogramming the properties of toxin enzymes using a supramolecular approach to broaden their therapeutic applications.

  相似文献   

179.
The synthesis of a novel and attractive class of nonsteroidal anti‐inflammatory and antimicrobial organoiron dendrimers attached to the well‐known drug ibuprofen is achieved. The structures of these dendrimers are established by spectroscopic and analytical techniques. The antimicrobial activity of these dendrimers is investigated and tested against five human pathogenic Gram‐positive and Gram‐negative bacteria, and minimum inhibitory concentrations are reported. Some of these synthesized dendrimers exhibit higher inhibitory activity against methicillin‐resistant Staphylococcus aureus, vancomycin‐resistant Enterococcus faecium, and Staphylococcus warneri compare to the reference drugs. As well, the in vitro and in vivo anti‐inflammatory activities of these dendrimers are evaluated. The results of in vivo anti‐inflammatory activity and histopathology of inflamed paws show that all dendrimers display considerable anti‐inflammatory activity; however, second‐generation dendrimer ( G2‐D6 ) shows the best anti‐inflammatory activity, which is more potent than the commercial drug ibuprofen at the same tested dose. Results of the toxicity study reveal that G2‐D6  is the safest drug on biological tissues.  相似文献   
180.
Photosynthesis involves light-harvesting complexes where an array of antenna pigment channels the absorbed solar energy to the reaction centre of a photosystem. This work reports a supramolecular dendrimer-dye assembly that mimics the natural light-harvesting mechanism. A dendrimeric molecule based on two-fluorophores has been constructed with three coumarin units at the end of three long arms and a 7-diethylaminocoumarin unit at the interior. The molecule self-aggregates in water into spherical micelles, which can encapsulate a rose-bengal dye (RB). On excitation, peripheral coumarin units shuttled the energy to the loaded RB dye reaction center via a two-step cascade resonance energy transfer (RET). The energy absorbed in the periphery is funnelled efficiently, resulting in a strong emission from the dye that resembles an energy funnel. The energy transfer cascade has been studied with both steady-state and time-resolved fluorescence spectroscopy. Molecular dynamics simulations of the self-assembled aggregates in water were also in agreement with the experimental observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号