首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1585篇
  免费   103篇
  国内免费   184篇
化学   620篇
晶体学   9篇
力学   22篇
综合类   12篇
数学   76篇
物理学   161篇
综合类   972篇
  2024年   6篇
  2023年   15篇
  2022年   50篇
  2021年   46篇
  2020年   40篇
  2019年   27篇
  2018年   31篇
  2017年   34篇
  2016年   42篇
  2015年   44篇
  2014年   80篇
  2013年   99篇
  2012年   90篇
  2011年   97篇
  2010年   58篇
  2009年   83篇
  2008年   92篇
  2007年   130篇
  2006年   92篇
  2005年   107篇
  2004年   66篇
  2003年   75篇
  2002年   49篇
  2001年   66篇
  2000年   57篇
  1999年   47篇
  1998年   25篇
  1997年   35篇
  1996年   18篇
  1995年   28篇
  1994年   27篇
  1993年   22篇
  1992年   17篇
  1991年   14篇
  1990年   14篇
  1989年   9篇
  1988年   15篇
  1987年   10篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
排序方式: 共有1872条查询结果,搜索用时 16 毫秒
71.
The present work describes the synthesis, characterization and application of functionalized surfactants derived through simple organic reaction steps. These surfactants have been particularly tailor made to resist hardness due to calcium ions in water. It is unique of its kind because here the surfactants have an analogous hydrophobic chain but differ structurally in the composition of the head groups in terms of the position of attachment of the chain. The effect of this small variability in the head group on the surfactant property, adsorption, self assembly and calcium tolerance behaviour has been studied in detail. This kind of phenol–keto surfactants has not been reported before. It was also found that one of the surfactants was more tolerant towards Ca2+ ion than the other. The individual packing behaviour of the surfactants at the air–water interface has been projected to cause this difference which is very interesting.  相似文献   
72.
测定了聚乙烯醇(PVA)和壳聚糖(CS)复合水凝胶的平衡含水量、熔融焓、等温溶胀动力学和非等温失水动力学等性质,讨论了水凝胶的组成和制备参数对这些性质的影响.结果显示:PVA/CS复合水凝胶具有适宜于软骨修复替代材料的网络结构和平衡含水量.CS与PVA复合减弱了凝胶的结晶度,但却增强了水与凝胶支架的相互作用.尽管水凝胶力学拉伸强度有所降低,但却优化了凝胶的生物相容性和降解能力.PVA/CS复合水凝胶是一种潜在的软骨修复材料,作为一种理论研究的模型体系,它将促进热力学在复杂医用材料方面的应用.  相似文献   
73.
A range of highly functionalized polycyclic fragments have been synthesized, employing a catalytic dehydrative cyclization. A range of nucleophiles are shown to be successful, with the reaction producing numerous high value motifs.  相似文献   
74.
Soil salinity disrupts the physiological and biochemical processes of crop plants and ultimately leads to compromising future food security. Sodium nitroprusside (SNP), a contributor to nitric oxide (NO), holds the potential to alleviate abiotic stress effects and boost tolerance in plants, whereas less information is available on its role in salt-stressed lentils. We examined the effect of exogenously applied SNP on salt-stressed lentil plants by monitoring plant growth and yield-related attributes, biochemistry of enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) amassing of leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2). Salinity stress was induced by NaCl application at concentrations of 50 mM (moderate salinity) and 100 mM (severe salinity), while it was alleviated by SNP application at concentrations of 50 µM and 100 µM. Salinity stress severely inhibited the length of roots and shoots, the relative water content, and the chlorophyll content of the leaves, the number of branches, pods, seeds, seed yield, and biomass per plant. In addition, MDA, H2O2 as well as SOD, CAT, and POD activities were increased with increasing salinity levels. Plants supplemented with SNP (100 µM) showed a significant improvement in the growth- and yield-contributing parameters, especially in plants grown under moderate salinity (50 mM NaCl). Essentially, the application of 100 µM SNP remained effective to rescue lentil plants under moderate salinity by regulating plant growth and biochemical pathways. Thus, the exogenous application of SNP could be developed as a useful strategy for improving the performance of lentil plants in salinity-prone environments.  相似文献   
75.
Oral delivery of protein drugs (PDs) made in plant cells could revolutionize current approaches to their production and delivery. Expression of PDs reduces their production cost by elimination of prohibitively expensive fermentation, purification, cold transportation/storage, and sterile injections and increases their shelf life for several years. The ability of plant cell wall to protect PDs from digestive acids/enzymes, commensal bacteria to release PDs in gut lumen after lysis of plant cell wall, and the role of gut-associated lymphoid tissue in inducing tolerance facilitate prevention or treatment of allergic, autoimmune diseases or antidrug antibody responses. The delivery of functional proteins facilitates treatment of inherited or metabolic disorders. Recent advances in making PDs free of antibiotic resistance genes in edible plant cells, long-term storage at ambient temperature maintaining their efficacy, production in Current Good Manufacturing Practice (cGMP) facilities, Investigational New Drug (IND)-enabling studies for clinical advancement, and Food and Drug Administration approval of orally delivered PDs augur well for advancing this novel drug delivery platform technology.  相似文献   
76.
Background: Filtration of osmotic solution affects selective penetration during osmotic dehydration (OD), and after drying is finished, this can influence the chemical composition of the material, which is also modified by OD. Methods: Osmotic dehydration was carried out in filtrated and non-filtrated concentrated chokeberry juice with the addition of mint infusion. Then, this underwent convective drying, vacuum-microwave drying and combined convective pre-drying, followed by vacuum-microwave finishing drying. Drying kinetics were presented and mathematical models were selected. The specific energy consumption for each drying method was calculated and the energy efficiency was determined. Results and Discussion: The study revealed that filtration of osmotic solution did not have significant effect on drying kinetics; however, it affected selective penetration during OD. The highest specific energy consumption was obtained for the samples treated by convective drying (CD) (around 170 kJ·g−1 fresh weight (fw)) and the lowest for the samples treated by vacuum-microwave drying (VMD) (around 30 kJ·g−1 fw), which is due to the differences in the time of drying and when these methods are applied. Conclusions: Filtration of the osmotic solution can be used to obtain the desired material after drying and the VMD method is the most appropriate considering both phenolic acid content and the energy aspect of drying.  相似文献   
77.
A microautoclave magic angle spinning NMR rotor is developed enabling in situ monitoring of solid–liquid–gas reactions at high temperatures and pressures. It is used in a kinetic and mechanistic study of the reactions of cyclohexanol on zeolite HBEA in 130 °C water. The 13C spectra show that dehydration of 1‐13C‐cyclohexanol occurs with significant migration of the hydroxy group in cyclohexanol and the double bond in cyclohexene with respect to the 13C label. A simplified kinetic model shows the E1‐type elimination fully accounts for the initial rates of 1‐13C‐cyclohexanol disappearance and the appearance of the differently labeled products, thus suggesting that the cyclohexyl cation undergoes a 1,2‐hydride shift competitive with rehydration and deprotonation. Concurrent with the dehydration, trace amounts of dicyclohexyl ether are observed, and in approaching equilibrium, a secondary product, cyclohexyl‐1‐cyclohexene is formed. Compared to phosphoric acid, HBEA is shown to be a more active catalyst exhibiting a dehydration rate that is 100‐fold faster per proton.  相似文献   
78.
Direct methanol fuel cells (DMFCs), as one of the important energy conversion devices, are of great interest in the fields of energy, catalysis and materials. However, the application of DMFCs is presently challenged because of the limited activity and durability of cathode catalysts as well as the poisoning issues caused by methanol permeation to the cathode during operation. Herein, we report a new class of Rh-doped PdCu nanoparticles (NPs) with ordered intermetallic structure for enhancing the activity and durability of the cathode for oxygen reduction reaction (ORR) and achieving superior methanol tolerance. The disordered Rh-doped PdCu NPs can be prepared via a simple wet-chemical method, followed by annealing to convert it to ordered phases. The results of transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), power X-ray diffraction (PXRD) analysis and high resolution TEM (HRTEM) successfully demonstrate the formation of near-spherical NPs with an average size of 6.5 ± 0.5 nm and the conversion of the phase structure. The complete phase transition temperatures of Rh-doped PdCu NPs and PdCu are 500 and 400 ℃, respectively. The molar ratio of Rh/Pd/Cu in the as-synthesized Rh-doped PdCu NPs is 5/48/47. Benefitting from Rh doping and the presence of the ordered intermetallic structure, the Rh-doped PdCu intermetallic electrocatalyst achieves the maximum ORR mass activity of 0.96 A·mg-1 at 0.9 V versus reversible hydrogen electrode (RHE) under alkaline conditions—a 7.4-fold enhancement compared to the commercial Pt/C catalyst. For different electrocatalysts, the ORR activities follow the sequence, ordered Rh-doped PdCu intermetallics > ordered PdCu intermetallics > disordered Rh-doped PdCu NPs > disordered PdCu NPs > commercial Pt/C catalyst. In addition, the distinct structure endows the Rh-doped PdCu intermetallics with highly stable ORR durability with unaltered half-wave potential (E1/2) and mass activity after continuous 20000 cycles, which are higher than those of other electrocatalysts. Furthermore, the E1/2 of the Rh-doped PdCu intermetallics decreases by only 5 mV after adding 0.5 mol·L-1 methanol to the electrolyte, while the commercial Pt/C catalyst negatively shifts by 235 mV and a distinct oxidation peak can be observed. The results indicate that the ORR activity of the Rh-doped PdCu intermetallic electrocatalyst can be well maintained even in the presence of poisoning environment. Our results have demonstrated that Rh-doped PdCu NPs with ordered intermetallic structures is a potential electrocatalyst toward the next-generation high-performance DMFCs.  相似文献   
79.
Various cathinone‐derived designer drugs (CATs) have recently appeared on the drug market. This study examined the mechanism for the generation of dehydrated ions for CATs during electrospray ionization collision‐induced dissociation (ESI‐CID). The generation mechanism of dehydrated ions is dependent on the amine classification in the cathinone skeleton, which is used in the identification of CATs. The two hydrogen atoms eliminated during the dehydration of cathinone (primary amine) and methcathinone (secondary amine) were determined, and the reaction mechanism was elucidated through the deuterium labeling experiments. The hydrogen atom bonded to the amine nitrogen was eliminated with the proton added during ESI, in both of the tested compounds. This provided evidence that CATs with tertiary amine structures (such as dimethylcathinone and α‐pyrrolidinophenones [α‐PPs]) do not undergo dehydration. However, it was shown that the two major tertiary amine metabolites (1‐OH and 2″‐oxo) of CATs generate dehydrated ions in ESI‐CID. The dehydration mechanisms of the metabolites of α‐pyrrolidinobutiophenone (α‐PBP) belongs to α‐PPs were also investigated. Stable‐isotope labeling showed the dehydration of the 1‐OH metabolite following a simple mechanism where the hydroxy group was eliminated together with the proton added during ESI. In contrast, the dehydration mechanism of the 2″‐oxo metabolite involved hydrogen atoms in three or more locations along with the carbonyl group oxygen, indicating that dehydration occurred via multiple mechanisms likely including the rearrangement reaction of hydrogen atoms. These findings presented herein indicate that the dehydrated ions in ESI‐CID can be used for the structural identification of CATs.  相似文献   
80.
从国内各地采取土样分离筛选产耐有机溶剂脂肪酶的新菌株,通过形态和生理生化特征以及系统进化树分析,筛选到的新菌株命名为Pseudomonas aeruginosa CS-2.来自Pseudomonas aeruginosa CS-2的粗脂肪酶液在乙腈中酶活提高,在苯、氯仿、正己烷、石油醚和异辛烷中表现出较高的稳定性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号