首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8719篇
  免费   659篇
  国内免费   1360篇
化学   2857篇
晶体学   34篇
力学   1041篇
综合类   80篇
数学   1596篇
物理学   1150篇
综合类   3980篇
  2024年   39篇
  2023年   109篇
  2022年   174篇
  2021年   228篇
  2020年   274篇
  2019年   258篇
  2018年   225篇
  2017年   265篇
  2016年   355篇
  2015年   316篇
  2014年   418篇
  2013年   646篇
  2012年   527篇
  2011年   574篇
  2010年   457篇
  2009年   537篇
  2008年   472篇
  2007年   604篇
  2006年   524篇
  2005年   525篇
  2004年   498篇
  2003年   403篇
  2002年   368篇
  2001年   303篇
  2000年   236篇
  1999年   230篇
  1998年   170篇
  1997年   130篇
  1996年   124篇
  1995年   137篇
  1994年   105篇
  1993年   100篇
  1992年   82篇
  1991年   64篇
  1990年   54篇
  1989年   45篇
  1988年   37篇
  1987年   27篇
  1986年   14篇
  1985年   11篇
  1984年   14篇
  1983年   7篇
  1982年   11篇
  1981年   5篇
  1980年   5篇
  1979年   8篇
  1978年   6篇
  1977年   4篇
  1976年   4篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
902.
A three-dimensional micromechanical unit cell model for particle-filled materials is presented. The cell model is based on a Voronoi tessellation of particles arranged on a body-centered cubic (BCC) array. The three-dimensionality of the present cell model enables the study of several deformation modes, including uniaxial, plane strain and simple shear deformations, as well as arbitrary principal stress states.The unit cell model is applied to studies on the micromechanical and macromechanical behavior of rubber-toughened polycarbonate. Different load cases are examined, including plane strain deformation, simple shear deformation and principal stress states. For a constant macroscopic strain rate, the different load cases show that the macroscopic flow strength of the blend decreases with an increase in void volume fraction, as expected. The main mechanism for plastic deformation is broad shear banding across inter-particle ligaments. The distributed nature of plastic straining acts to reduce the amount of macroscopic strain softening in the blend as the initial void volume fraction is increased. In the case of plane strain deformation, the plastic flow is observed to initiate across inter-particle ligaments in the direction of constraint. This particular mode of deformation could not have been captured using a two-dimensional, plane strain idealization of cylindrical voids in a matrix.The potential for localized crazing and/or cavitation in the matrix is addressed. It is observed that the introduction of voids acts to relieve hydrostatic stress in the matrix material, compared to the homopolymer. It is also seen that the predicted peak hydrostatic stress in the matrix is higher under plane strain deformation than under triaxial tension (with equal lateral stresses), for the same macroscopic stress triaxiality.The effect of void volume fraction on the macroscopic uniaxial tension behavior of the different blends is examined using a Considère construction for dilatant materials. The natural draw ratio was predicted to decrease with an increase in void volume fraction.  相似文献   
903.
904.
4106航空润滑油拖动特性研究   总被引:15,自引:3,他引:15  
采用高速球-盘式拖动力试验装置测定了4106航空润滑油在不同载荷、滚动速度、入口油温及滑滚比下的拖动系数,分析了润滑油的拖动特性,建立了拖动系数的简单计算公式.结果表明:4106航空润滑油的拖动系数随着载荷变化出现转折;在高速和高压条件下,4106航空润滑油呈现非牛顿特性;当入口油温较低时润滑油的热效应较显著;随着载荷增大,入口油温和滚动速度对拖动系数的影响减小;理论计算结果同实测值吻合良好.  相似文献   
905.
稀土对Fe基合金激光熔覆层抗磨性能的影响   总被引:17,自引:5,他引:17  
在Fe基合金粉末中引入La2O3,通过激光熔覆得到了同基材结合良好的熔覆层,用扫描电子显微镜观察了稀土含量对熔覆层组织形貌的影响,用显微硬度计测量了熔覆层的硬度分布,并采用MM-200型摩擦磨损试验机考察了不同熔覆层在干摩擦条件下的摩擦磨损性能.结果表明,引入稀土有利于促进晶粒细化,提高熔覆层的组织均匀性及表面硬度,从而改善熔覆层的摩擦磨损性能.  相似文献   
906.
粉煤灰填充聚氯乙烯复合材料的摩擦学特性研究   总被引:5,自引:0,他引:5  
熊党生 《摩擦学学报》2003,23(2):154-157
用热压方法制备了不同粉煤灰粒度及含量的聚氯乙烯(PVC)复合材料,在MM—200型环—块摩擦磨损试验机上评价了复合材料同淬火45^#钢在干摩擦条件下对摩时的摩擦磨损性能,用扫描电子显微镜及光学显微镜观察分析磨损表面.结果表明:当粉煤灰质量分数为40%时,填充PVC复合材料的硬度最高,相应的磨损率最低,比纯PVC的磨损率低2个数量级以上;粉煤灰粒度越小,复合材料的硬度越高,耐磨性越好.  相似文献   
907.
原位TiC颗粒增强灰铸铁复合材料的组织及其摩擦磨损性能   总被引:8,自引:0,他引:8  
采用原位反应铸造法制备了TiC颗粒增强灰铸铁复合材料,并考察了复合材料的组织、力学性能和摩擦磨损性能.结果表明:随着合金熔体中Ti含量增加,复合材料中TiC颗粒的数量增加,尺寸减小,而石墨的数量降低,且其形态由片状转化为点状;含有大量TiC颗粒及少量点状石墨的复合材料的力学性能和耐磨性优良,即使在较高载荷下,复合材料中的TiC颗粒和点状石墨仍具有协同减摩抗磨作用,从而使得复合材料的摩擦磨损性能优于普通灰铸铁.  相似文献   
908.
The functional form of non-local elasticity kernels is studied within the context of the integral formalism. The study is limited to linear isotropic elasticity. The kernels are derived analytically based on the discrete structure of the material at the atomic scale. Atomistic simulations are used to validate the results. Materials in which the interatomic interactions are represented by pair, as well as embedded atom-type potentials are considered. The derived kernels have a range which extends up to the cut-off radius of the interatomic potential, are positive at the origin, and become negative approximately one atomic distance away, thus departing from the commonly assumed Gaussian functional form. The functional form of the potential and the radial distribution function of interacting neighbors about a representative atom fully define their shape. This new continuum model involves two material length scales that are both derived from atomistics for a Morse solid and for Al. Two applications are considered in closure. It is shown that in strained superlattices, the non-local model predicts maximum stresses that are much larger than those obtained within the local theory. This observation has implications for defect nucleation in these structures. Furthermore, the new non-local model improves upon the Gaussian one by predicting a more realistic wave dispersion relationship, with essentially zero group velocity at the boundary of the Brillouin zone.  相似文献   
909.
利用往复摩擦磨损试验机研究了深度轧制纳米化纯铁及其退火态和普通轧态纯铁在干摩擦和油润滑下的磨损行为,采用冲击划痕法和声发射划痕法研究材料的塑性变形能力,并对纳米化影响纯铁磨损行为的原因进行初步探讨.结果表明,在干摩擦条件下深度轧制纯铁的抗磨粒磨损性能较普通轧态纯铁差,抗犁削能力也较弱;在油润滑条件下,深度轧制纯铁显示出优良的耐磨性;经深度轧制后,纳米化纯铁具有较高的表面活性,但同时由于塑性的丧失只能承受较小的剪切力.  相似文献   
910.
干摩擦条件下WC增强Cu—Mn—Ni复合涂层的磨损性能研究   总被引:6,自引:0,他引:6  
潘蕾  陶杰 《摩擦学学报》2002,22(1):10-13
通过钎焊工艺在 45 # 钢表面沉积WC颗粒增强Cu -Mn -Ni复合涂层 ,考察了WC颗粒尺寸及含量对WC/Cu-Mn -Ni复合涂层耐磨性能的影响 .实验结果表明 :在给定的试验条件下 ,当WC颗粒质量分数为 30 %而平均粒径为 15 0 μm时 ,复合涂层的耐磨性最佳 ;WC颗粒对复合涂层磨损过程及磨损机制具有显著的影响 ,磨损机理表现为表面微突体间相互滑动产生塑性变形、粘着、脆性剥落及犁削  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号